Contents

1-0 General Instructions 1
1-1 Uncertainty and Error 7
1-2 Forces 23
1-3 Velocity, Acceleration, and g 37
1-4 Projectile Motion and Conservation of Energy 47
1-5 Conservation of Momentum 55
1-6 Torque and Rotational Inertia 65
1-7 Centripetal Force and Angular Momentum Conservation 75
1-8 Waves I: Standing Waves 85
1-9 Waves II: The Oscilloscope and Function Generator 97
1-10 Ideal Gas and Thermal Conductivity 107
Introduction 1-0
General Instructions

1 Purpose of the Laboratory

The laboratory experiments described in this manual are an important part of your physics course. Most of the experiments are designed to illustrate important concepts described in the lectures. Whenever possible, the material will have been discussed in lecture before you come to the laboratory. But some of the material, like the first experiment on measurement and errors, is not discussed at length in the lecture.

The sections headed Applications and Lab Preparation Examples, which are included in some of the manual sections, are not required reading unless your laboratory instructor specifically assigns some part. The Applications are intended to be motivational and so should indicate the importance of the laboratory material in medical and other applications. The Lab Preparation Examples are designed to help you prepare for the lab; you will not be required to answer all these questions (though you should be able to answer any of them by the end of the lab). The individual laboratory instructors may require you to prepare answers to a subset of these problems.

2 Preparation for the Laboratory

In order to keep the total time spent on laboratory work within reasonable bounds, the write-up for each experiment will be completed at the end of the lab and handed in before the end of each laboratory period. Therefore, it is imperative that you spend sufficient time preparing for the experiment before coming to laboratory. You should take advantage of the opportunity that the experiments are set up in the Lab Library (Room 506) and that TAs there are willing to discuss the procedure with you.

At each laboratory session, the instructor will take a few minutes at the beginning to go over the experiment to describe the equipment to be used and to outline the important issues. This does not substitute for careful preparation beforehand! You are expected to have studied the manual and appropriate references at home so that you are prepared when you arrive to perform the experiment. The instructor will be available primarily to answer questions, aid you in the use of the equipment, discuss the physics behind the experiment, and guide you in completing your analysis and write-up. Your instructor will describe his/her policy regarding expectations during the first lab meeting.
Some experiments and write-ups may be completed in less than the three-hour laboratory period, but under no circumstances will you be permitted to stay in the lab after the end of the period or to take your report home to complete it. If it appears that you will be unable to complete all parts of the experiment, the instructor will arrange with you to limit the experimental work so that you have enough time to write the report during the lab period.

Note: Laboratory equipment must be handled with care and each laboratory bench must be returned to a neat and orderly state before you leave the laboratory. In particular, you must turn off all sources of electricity, water, and gas.

3 Bring to Each Laboratory Session

- A pocket calculator (with basic arithmetic and trigonometric operations).
- A pad of 8.5×11 inch graph paper and a sharp pencil. (You will write your reports on this paper, including your graphs. Covers and staplers will be provided in the laboratory.)
- A ruler (at least 10 cm long).

4 Graph Plotting

Frequently, a graph is the clearest way to represent the relationship between the quantities of interest. There are a number of conventions, which we include below.

- A graph indicates a relation between two quantities, \(x \) and \(y \), when other variables or parameters have fixed values. Before plotting points on a graph, it may be useful to arrange the corresponding values of \(x \) and \(y \) in a table.

- Choose a convenient scale for each axis so that the plotted points will occupy a substantial part of the graph paper, but do not choose a scale which is difficult to plot and read, such as 3 or 3/4 units to a square. Graphs should usually be at least half a page in size.

- Label each axis to identify the variable being plotted and the units being used. Mark prominent divisions on each axis with appropriate numbers.

- Identify plotted points with appropriate symbols, such as crosses, and when necessary draw vertical or horizontal bars through the points to indicate the range of uncertainty involved in these points.
• Often there will be a theory concerning the relationship of the two plotted variables. A linear relationship can be demonstrated if the data points fall along a single straight line. There are mathematical techniques for determining which straight line best fits the data, but for the purposes of this lab it will be sufficient if you simply make a rough estimate visually. The straight line should be drawn as near the mean of the all various points as is optimal. That is, the line need not precisely pass through the first and last points. Instead, each point should be considered as accurate as any other point (unless there are experimental reasons why some points are less accurate than others). The line should be drawn with about as many points above it as below it, and with the ‘aboves’ and ‘belows’ distributed at random along the line. (For example, not all points should be above the line at one end and below at the other end).

5 Error Analysis

All measurements, however carefully made, give a range of possible values referred to as an uncertainty or error. Since all of science depends on measurements, it is important to understand uncertainties and where they come from. Error analysis is the set of techniques for dealing with them.

In science, the word “error” does not take the usual meaning of “mistake”. Instead, we will use it interchangeably with “uncertainty” when talking about the result of a measurement. There are many aspects to error analysis and it will feature in some form in every lab throughout this course.

5.1 Inevitability of Experimental Error

In the first experiment of the semester, you will measure the length of a pendulum. Without a ruler, you might compare it to your own height and (after converting to meters) make an estimate of 1.5 m. Of course, this is only approximate. To quantify this, you might say that you are sure it is not less than 1.3 m and not more than 1.7 m. With a ruler, you measure 1.62 m. This is a much better estimate, but there is still uncertainty. You couldn’t possibly say that the pendulum isn’t 1.62001 m long. If you became obsessed with finding the exact length of the pendulum you could buy a fancy device using a laser, but even this will have an error associated with the wavelength of light.

Also, at this point you would come up against another problem. You would find that the string is slightly stretched when the weight is on it and the length even depends on the temperature or moisture in the room. So which length do you use? This is a problem of definition. During lab you might find another example. You might ask
whether to measure from the bottom, top or middle of the weight. Sometimes one of the choices is preferable for some reason (in this case the middle because it is the center of mass). However, in general it is more important to be clear about what you mean by “the length of the pendulum” and consistent when taking more than one measurement. Note that the different lengths that you measure from the top, bottom or middle of the weight do not contribute to the error. Error refers to the range of values given by measurements of exactly the same quantity.

5.2 Importance of Errors

In daily life, we usually deal with errors intuitively. If someone says “I’ll meet you at 9:00”, there is an understanding of what range of times is OK. However, if you want to know how long it takes to get to JFK airport by train you might need to think about the range of possible values. You might say “It’ll probably take an hour and a half, but I’ll allow two hours”. Usually it will take within about 10 minutes of this most probable time. Sometimes it will take a little less than 1hr20, sometimes a little more than 1hr40, but by allowing the most probable time plus three times this uncertainty of 10 minutes you are almost certain to make it. In more technical applications, for example air traffic control, more careful consideration of such uncertainties is essential.

In science, almost every time that a new theory overthrows an old one, a discussion or debate about relevant errors takes place. In this course, we will definitely not be able to overthrow established theories. Instead, we will verify them with the best accuracy allowed by our equipment. The first experiment involves measuring the gravitational acceleration g. While this fundamental parameter has clearly been measured with much greater accuracy elsewhere, the goal is to make the most accurate possible verification using very simple apparatus which can be a genuinely interesting exercise.

There are several techniques that we will use to deal with errors throughout the course. All of them are well explained, with more formal justifications, in “An Introduction to Error Analysis” by John Taylor, available in the Science and Engineering Library in the Northwest Corner Building.

5.3 Questions or Complaints

If you have a difficulty, you should attempt to work it through with your laboratory instructor. If you cannot resolve it, you may discuss such issues with:

- one of the laboratory Preceptors in Pupin Room 729;
- the Undergraduate Assistant in the Departmental Office – Pupin Room 704;
- the instructor in the lecture course, or the Director of Undergraduate Studies;
• your undergraduate advisor.

As a general rule, it is a good idea to work downward through this list, though some issues may be more appropriate for one person than another.
1 Introduction

There is no such thing as a perfect measurement. All measurements have errors and uncertainties, no matter how hard we might try to minimize them. Understanding possible errors is an important issue in any experimental science. The conclusions we draw from the data, and especially the strength of those conclusions, will depend on how well we control the uncertainties.

Let’s look at an example: You measure two values 2.5 and 1.5. From theory, the expected value is 2.3, so the value 2.5 almost agrees, whereas 1.5 is far off. But if you take into account the uncertainties (i.e. the interval in which your result is expected to lie), neither may be far off. For experimental uncertainties of 0.1 and 1.0, respectively, your two measured values may be expressed 2.5 ± 0.1 and 1.5 ± 1.0. The expected value falls within the range of the second measurement but not of the first!

This first lab deals exclusively with this important subject. The techniques studied here will be essential for the rest of this two-semester lab course. The issues are important in order to arrive at good judgments in any field (like medicine) in which it is necessary to understand not just numerical results, but the uncertainties associated with those results.

2 Theory

2.1 Types of Uncertainties

Uncertainty in a measurement can arise from three possible origins: the measuring device, the procedure of how you measure, and the observed quantity itself. Usually the largest of these will determine the uncertainty in your data.

Uncertainties can be divided into two different types: systematic uncertainties and random uncertainties.

2.1.1 Systematic Uncertainties

Systematic uncertainties or systematic errors always bias results in one specific direction. They will cause your measurement to consistently be higher or lower than the accepted value.
An example of a systematic error follows. Assume you want to measure the length of a table in cm using a meter stick. However, the stick is made of metal that has contracted due to the temperature in the room, so that it is less than one meter long. Therefore, all the intervals on the stick are smaller than they should be. Your numerical value for the length of the table will then always be larger than its actual length no matter how often or how carefully you measure. Another example might be measuring temperature using a mercury thermometer in which a bubble is present in the mercury column.

Systematic errors are usually due to imperfections in the equipment, improper or biased observation, or the presence of additional physical effects not taken into account. (An example might be an experiment on forces and acceleration in which there is friction in the setup and it is not taken into account!)

In performing experiments, try to estimate the effects of as many systematic errors as you can, and then remove or correct for the most important. By being aware of the sources of systematic error beforehand, it is often possible to perform experiments with sufficient care to compensate for weaknesses in the equipment.

2.1.2 Random Uncertainties

In contrast to systematic uncertainties, random uncertainties are an unavoidable result of measurement, no matter how well designed and calibrated the tools you are using. Whenever more than one measurement is taken, the values obtained will not be equal but will exhibit a spread around a mean value, which is considered the most reliable measurement. That spread is known as the random uncertainty. Random uncertainties are also unbiased – meaning it is equally likely that an individual measurement is too high or too low.

From your everyday experience you might be thinking, “Stop! Whenever I measure the length of a table with a meter stick I get exactly the same value no matter how often I measure it!” This may happen if your meter stick is insensitive to random measurements, because you use a coarse scale (like mm) and you always read the length to the nearest mm. But if you would use a meter stick with a finer scale, or if you interpolate to fractions of a millimeter, you would definitely see the spread. As a general rule, if you do not get a spread in values, you can improve your measurements by using a finer scale or by interpolating between the finest scale marks on the ruler.

How can one reduce the effect of random uncertainties? Consider the following example. Ten people measure the time of a sprinter using stopwatches. It is very unlikely that each of the ten stopwatches will show exactly the same result. Even if all of the people started their watches at exactly the same time (unlikely) some of the people will have stopped the watch early, and others may have done so late. You
will observe a spread in the results. If you *average* the times obtained by all ten stop watches, the *mean* value will be a better estimate of the true value than any individual measurement, since the uncertainty we are describing is random, the effects of the people who stop early will compensate for those who stop late. In general, making multiple measurements and averaging can reduce the effect of random uncertainty.

Remark: We usually specify any measurement by including an estimate of the random uncertainty. (Since the random uncertainty is unbiased we note it with a ± sign). So if we measure a time of 7.6 seconds, but we expect a spread of about 0.2 seconds, we write as a result:

\[t = (7.6 \pm 0.2) \text{s} \]

indicating that the uncertainty of this measurement is 0.2 s or about 3%.

2.2 Numerical Estimates of Uncertainties

For this laboratory, we will estimate uncertainties with three approximation techniques, which we describe below. You should note which technique you are using in a particular experiment.

2.2.1 Upper Bound

Most of our measuring devices in this lab have scales that are coarser than the ability of our eyes to measure.

![Figure 1: Measuring Length](image)

For example in the figure above, where we are measuring the length of an object against a meter stick marked in cm, we can definitely say that our result is somewhere between 46.4 cm and 46.6 cm. We assume as an *upper* bound of our uncertainty, an amount equal to *half* this width (in this case 0.1 cm). The final result can be written as:

\[\ell = (46.5 \pm 0.1) \text{cm} \]

(1.2)
2.2.2 Estimation from the Spread (2/3 method)

For data in which there is random uncertainty, we usually observe individual measurements to cluster around the mean and drop in frequency as the values get further from the mean (in both directions). Find the interval around the mean that contains about 2/3 of the measured points: half the size of this interval is a good estimate of the uncertainty in each measurement.

The reasons for choosing a range that includes 2/3 of the values come from the underlying statistics of the normal (or Gaussian) distribution. This choice allows us to accurately add and multiply values with errors and has the advantage that the range is not affected much by outliers and occasional mistakes. A range that always includes all of the values is generally less meaningful.

Example: You measure the following values of a specific quantity:

9.7, 9.8, 10, 10.1, 10.1, 10.3

The mean of these six values is 10.0. The interval from 9.75 to 10.25 includes 4 of the 6 values; we therefore estimate the uncertainty to be 0.225. The result is that the best estimate of the quantity is 10.0 and the uncertainty of a single measurement is 0.2.

2.2.3 Square-Root Estimation in Counting

For inherently random phenomena that involve counting individual events or occurrences, we measure only a single number N. This kind of measurement is relevant to counting the number of radioactive decays in a specific time interval from a sample of material, for example. It is also relevant to counting the number of left-handed people in a random sample of the population. The (absolute) uncertainty of such a single measurement, N, is estimated as the square root of N. As an example, if we measure 50 radioactive decays in 1 second we should present the result as 50 ± 7 decays per second. (The quoted uncertainty indicates that a subsequent measurement performed identically could easily result in numbers differing by 7 from 50.)

\footnote{There is a precise mathematical procedure to obtain uncertainties (standard deviations) from a number of measured values. Here we will apply a simple “rule of thumb” that avoids the more complicated mathematics of that technique. The uncertainty using the standard deviation for the group of values in our example below is 0.2.}

\footnote{Note that about 5\% of the measured values will lie outside \pm twice the uncertainty}

\footnote{While the above method for calculating uncertainty is good enough for our purposes, it oversimplifies a bit the task of calculating the uncertainty of the mean of a quantity. For those who are interested, please see the appendix for elaboration and clarification.}

10
2.3 Number of Significant Digits

The number of significant digits in a result refers to the number of digits that are relevant. The digits may occur after a string of zeroes. For example, the measurement of 2.3 mm has two significant digits. This does not change if you express the result in meters as 0.0023 m. The number 100.10, by contrast, has 5 significant digits.

When you record a result, you should use the calculated error to determine how many significant digits to keep. Let’s illustrate the procedure with the following example. Assume you measure the diameter of a circle to be \(d = 1.6232 \) cm, with an uncertainty of 0.102 cm. You now round your uncertainty to one or two significant digits (up to you). So (using one significant digit) we initially quote \(d = (1.6232 \pm 0.1) \) cm. Now we compare the mean value with the uncertainty, and keep only those digits that the uncertainty indicates are relevant. Finally, we quote the result as \(d = (1.6 \pm 0.1) \) cm for our measurement.

Suppose further that we wish to use this measurement to calculate the circumference \(c \) of the circle with the relation \(c = \pi \cdot d \). If we use a standard calculator, we might get a 10 digit display indicating:

\[
c = 5.099433195 \pm 0.3204424507 \text{ cm}
\]

This is not a reasonable way to write the result! The uncertainty in the diameter had only one significant digit, so the uncertainty of the circumference calculated from the diameter cannot be substantially better. Therefore we should record the final result as:

\[
c = 5.1 \pm 0.3 \text{ cm}
\]

(If you do intermediate calculations, it is a good idea to keep as many figures as your calculator can store. The above argument applies when you record your results!)

2.4 Relative and Absolute Uncertainty

There are two ways to record uncertainties: the absolute value of the uncertainty or the uncertainty relative to the mean value. So in the example above, you can write \(c = (5.1 \pm 0.3) \) cm or equally well \(c = 5.1 \text{ cm} (1.00 \pm 0.06) \). You can see that if you multiply out the second form you will obtain the first, since \(5.1 \times 0.06 = 0.3 \). The second form may look a bit odd, but it tells you immediately that the uncertainty is 6\% of the measured value. The number 0.3 cm is the absolute uncertainty and has the same units as the mean value (cm). The 0.06 (or 6\%) is the relative uncertainty and has no units since it is the ratio of two lengths.
2.5 Propagation of Uncertainties

Often, we are not directly interested in a measured value, but we want to use it in a formula to calculate another quantity. In many cases, we measure many of the quantities in the formula and each has an associated uncertainty. We deal here with how to propagate uncertainties to obtain a well-defined uncertainty on a computed quantity.

2.5.1 Adding/Subtracting Quantities

When we add or subtract quantities, their uncertainties must always be added (never subtracted) to obtain the absolute uncertainty on the computed quantity.\(^4\)

Take as an example measuring the length of a dog. We measure the distance between the left wall and the tail of the dog and subtract the distance from the wall to the dog’s nose. So the total length of the dog is:

\[
\text{Length} = (1.53 \pm 0.05) \text{ m} - (0.76 \pm 0.02) \text{ m} = (1.53 - 0.76) \pm (0.05 + 0.02) \text{ m} = (0.77 \pm 0.07) \text{ m}
\]

2.5.2 Multiplying/Dividing Quantities

When we multiply or divide quantities, we add (never subtract) the relative uncertainties to obtain the relative uncertainty of the computed quantity.\(^5\)

\(^4\)The propagation of random uncertainties is actually slightly more complicated, but the procedure outlined here usually represents a good approximation, and it never underestimates the uncertainty. See the appendix for more information.

\(^5\)Our calculation of the uncertainty actually overestimates it. The correct method does not add the absolute/relative uncertainty, but rather involves evaluating the square root of the sum of the squares. For more information please refer to the appendix of this experiment.
Take as an example the area of a rectangle, whose individual sides are measured to be:

\[a = 25.0 \pm 0.5 \text{ cm} = 25.0 \text{ cm (1.00 \pm 0.02)} \]
\[b = 10.0 \pm 0.3 \text{ cm} = 10.0 \text{ cm (1.00 \pm 0.03)} \]

(1.6)

The area is obtained as follows:

\[
\text{Area} = (25.0 \pm 0.5 \text{ cm}) \cdot (10.0 \pm 0.3 \text{ cm})
\]
\[
= 25.0 \text{ cm (1.00 \pm 0.02)} \cdot 10.0 \text{ cm (1.00 \pm 0.03)}
\]
\[
= (25.0 \text{ cm} \cdot 10.0 \text{ cm}) (1.00 \pm (0.02 + 0.03))
\]
\[
= 250.0 \text{ cm}^2 (1.00 \pm 0.05)
\]
\[
= 250.0 \pm 12.5 \text{ cm}^2
\]
\[
= 250 \pm 10 \text{ cm}^2
\]

Note that the final step has rounded both the result and the uncertainty to an appropriate number of significant digits, given the uncertainty on the lengths of the sides.

Remarks: Note that uncertainties on quantities used in a mathematical relationship always increase the uncertainty on the result. The quantity with the biggest uncertainty usually dominates the final result. Often one quantity will have a much bigger uncertainty than all the others. In such cases, we can simply use this main contribution.

2.5.3 Powers and Roots

When raising a value to a certain power, its relative uncertainty is multiplied by the exponent. This applies to roots as well, since taking the root of a number is equivalent to raising that number to a fractional power.

Squaring a quantity involves multiplying its relative uncertainty by 2, while cubing a quantity causes its relative uncertainty to be multiplied by 3.

Taking the square root of a quantity (which is equivalent to raising the quantity to the 1/2 power) causes its relative uncertainty to be multiplied by 1/2. For example, if you know the area of a square to be:

\[
\text{Area} = 100 \pm 8 \text{ m}^2 = 100 \text{ m}^2 (1.00 \pm 0.08)
\]

(1.8)

then it follows that the side of the square is:

\[
\text{Side} = 10 \text{ m (1.00 \pm 0.04)} = 10.0 \pm 0.4 \text{ m}
\]

(1.9)

You can convince yourself that this is true by checking it backwards using the rules described in section 2.5.2.
2.5.4 Multiplication by a Constant

Multiplying a value by a constant does not change its relative error.

2.5.5 Other Functions

If you need to calculate the error of a calculation that does not fit into one of these rules (such as trigonometric functions or logarithmic ones), here is a manual method that you can use.

Based upon the error of the quantity that you determined, you can find the maximum and minimum values of the quantity that you are calculating. The value that you found should be roughly midway between these two quantities. Then if you split the difference between the maximum and minimum you should obtain a reasonable estimate of the error.

Here is an example: Suppose you measure an angle to be \((47.3 \pm 0.5)\)° and you want to determine the error of \(\sin(47.3 \pm 0.5)\)°. You find that \(\sin(47.3) = 0.735\). Based upon your reported uncertainty, you know that your angle could be as large as \(47.8\)° and as small as \(46.8\)°, and therefore you should calculate \(\sin(47.8) = 0.741\) and \(\sin(46.8) = 0.729\). So your calculated value is 0.735 but it can be as low as 0.729 and as high as 0.741 and therefore, if you halve the difference between 0.729 and 0.741 you get a reasonable error estimate of 0.006. So you should report your value as \(0.735 \pm 0.006\).

3 Description and Procedure

You are to perform two experiments to practice the estimation of uncertainty and the propagation of errors. These involve measuring the period of a pendulum and measuring the reaction time of a human being.

3.1 Pendulum

In the first part, we measure the time it takes a pendulum to swing through a full cycle, the period of oscillation, and compare this to the theoretical prediction. Two methods of recording the time will be used to illustrate that different ways of making a measurement can result in very different uncertainties. In each case, many measurements will be taken to demonstrate the frequency of differing values. Since a number of measurements need to be made, you may wish to perform this experiment in teams of two: one person measures the time values, the other records the results.

In the first series, the stopwatch should be started when the pendulum is at one of its maximum positions and stopped as it returns to that position. A full period should be measured, not the time it takes for the pendulum to travel from one maximum
point to the other. After 24 measurements, sort the measurements in bins of 50 ms. (Therefore all measurements with times between e.g. 1.25 s and 1.29 s (inclusive) are placed in the same bin.) Make a graph of the frequency of measurements in the bins vs. the times of the bins. Calculate the average and estimate the uncertainty using the 2/3 rule.

In the second series, measure the time as the pendulum passes a fixed characteristic mark in the background. For this you might use a chair or the leg of a table, or the lowest point of the pendulum swing. In order to make sure you are again measuring a complete period, you should take care to measure the time between when the pendulum passes through the same point in the same direction. Perform the same experiment, making 24 measurements, and sort the measurements in bins of 50 ms. Again graph your result and get the average and the uncertainty using the 2/3 estimate.

See if there is a substantial difference between the uncertainties of these two measurements and also if the measured values (i.e. the averages) coincide within uncertainty. In addition, measure the length ℓ of the pendulum from the pivot point to the center of the mass (note that you will need to guess somewhat on the location of the center of the mass). This allows you to determine the acceleration due to gravity at the earth’s surface, g, using the formula

$$\frac{2 \cdot \pi}{t} = \sqrt{\frac{g}{\ell}}$$

(1.10)

where t is the measured period. Make sure to propagate uncertainty from ℓ and t. Finally, compare your value of g to the accepted value:

$$g = 9.8 \text{ m/s}^2$$

(1.11)

- Does the accepted value of g fall within your uncertainty?
- What are the sources of error?

3.2 Reaction Time

Next measure your reaction time to a specific stimulus. Perform this experiment with a partner, but every student should obtain his/her own data.

One student holds a meter ruler (vertically) at the upper end and the other student places two fingers around (but not touching) the 50 cm mark of the ruler. The first student (quietly) releases the ruler and the second student tries to grab it as soon as possible after he/she sees it released. Measure the distance s the ruler falls. After

6This will be covered in the 1201 lecture course. See, for example, Chapter 15 in Fundamentals of Physics by Halliday, Resnick & Walker.
performing this experiment 10 times (for each student), look at the spread in the data and calculate the resulting uncertainty (using the 2/3 estimate). If you have a few values that are far off from all the other values (e.g. because you were irritated or distracted) you may decide to ignore them when you calculate your reaction time, but note in your lab report which measured points were not used.

Use the relation\(^7\)

\[s = \frac{1}{2} g \cdot t^2 \]

(1.12)

to calculate your average reaction time and the corresponding uncertainty. This experiment is an example of an indirect measurement. You measure a quantity (here the distance the ruler is falling) that you do not care about directly, but is necessary in order to calculate the quantity you want to know (the reaction time).

You should report your reaction time in seconds in your lab report.

- Would it be reasonable to give your measured values with a precision measured in millimeters? Why or why not?
- How well could you get the same initial conditions for each try?
- Note the major sources of error.
- Suggest improvements to the lab or shortly describe a better experiment.

\(^7\)See, for example, Chapter 2 in the Halliday, Resnick & Walker text.
4 Sample Data Sheet

4.1 Pendulum

Length of the pendulum = ± cm

From Max to Max

Using Reference Point

4.2 Reaction Time

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>
5 Applications

You read of a certain test intended to indicate a particular kind of cancer. The test gives you a positive result for \((80 \pm 10\%)\) of all persons tested who really have this kind of cancer (true positives). But the test also gives you a positive result for \((2 \pm 1\%)\) of all healthy persons (false positives). Now you read a publication where the author performed this test on 10,000 workers that deal with a certain chemical. The author got 400 positive samples from these workers and claims that this is strong evidence that this particular chemical enhances the development of this kind of cancer since it is known from literature that only \((1 \pm 0.5\%)\) of the population are expected to have this kind of cancer. How reliable is the claim of the author?

Numerical Answer:

If one assumes that the 10,000 workers would mirror the average population, then there should be:

\[
10000 \pm (0.010 \pm 0.005) = 100 \pm 50
\]

persons having this cancer. Of them, the test gives:

\[
(0.8 \pm 0.1) \pm (100 \pm 50) = 80 \pm 50
\]

positive results (true positives).

There are then \(9900 \pm 50\) persons expected not to have this kind of cancer. Of them:

\[
(0.02 \pm 0.01) \pm (9900 \pm 50) \approx 200 \pm 100
\]

give positive results (false positives).

The total number of positives in the average population is therefore \(280 \pm 150\).

So how do you judge the author’s conclusion of “strong evidences”?

If you wanted to design a new test using the same procedure but to arrive at a stronger conclusion, and you could either increase the rate of true positives or decrease the rate of wrong negatives, which would you choose?

Reference: Paul Cutler: Problem Solving in Clinical Medicine, Chapter 5, Problem 5 (modified).

6 Lab Preparation Examples

Below are some questions to help you prepare. You will *not* be expected to answer all these questions as part of your lab report.
Estimation of Uncertainty:

1. You have the following distribution of measured values:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>I</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>IIIII</td>
<td>I</td>
</tr>
<tr>
<td>4</td>
<td>IIIII</td>
<td>III</td>
</tr>
<tr>
<td>5</td>
<td>IIIII</td>
<td>IIIII</td>
</tr>
<tr>
<td>6</td>
<td>IIIII</td>
<td>IIIII</td>
</tr>
<tr>
<td>7</td>
<td>IIIII</td>
<td>III</td>
</tr>
<tr>
<td>8</td>
<td>III</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>II</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>I</td>
<td></td>
</tr>
</tbody>
</table>

Estimate the uncertainty using the 2/3 estimate.

2. Estimate the mean and uncertainty of the following group of values:

\[1.6 \text{ s}, 1.3 \text{ s}, 1.7 \text{ s}, 1.4 \text{ s}\]

3. In a radioactive decay you get 16 counts. What is the absolute uncertainty of the number of counts? What is the relative uncertainty?

4. In a radioactive decay you get 1600 counts. What is the absolute uncertainty of the number of counts? What is the relative uncertainty?

5. How many counts should you get so that the relative uncertainty is 1% or less?

Significant digits:

6. How many significant digits has \(l = 0.0254 \text{ m} \)?

7. Write \(t = 1.25578 \pm 0.1247 \text{ s} \) with two significant digits (in the uncertainty).

Propagation of Uncertainty:

8. For a pendulum with \(l = 1.0 \pm 0.1 \text{ m} \), you measure a period of \(t = 2.0 \pm 0.2 \text{ s} \). What is the value of the earth’s acceleration \(g \)?

9. You measure the volume of a box by measuring the length of the single sides. For the lengths of the single sides you get:

\[a = 10.0 \pm 0.1 \text{ cm} \quad b = 5.0 \pm 0.2 \text{ cm} \quad c = 7.5 \pm 0.3 \text{ cm} \]

What is the volume of the box (including uncertainty and units) in cm\(^3\)? What is the volume of the box in m\(^3\)?
10. You measure the following quantities:

\[
A = 1.0 \pm 0.2 \text{ m} \quad B = 2.0 \pm 0.2 \text{ m} \quad C = 2.5 \pm 0.5 \text{ m/s} \\
D = 0.10 \pm 0.01 \text{ s} \quad E = 100 \pm 10 \text{ m/s}^2
\]

Calculate the mean and uncertainty of:

a) \(A + B = \)

b) \(A - B = \)

c) \(C \cdot D = \)

d) \(C/D = \)

e) \(C \cdot D + A = \)

f) \(\frac{1}{2} E \cdot D + C = \)

g) \(A \cdot B/(A - B) = \)

Include units! For e)–g) perform it step by step.

Relative and Absolute Uncertainty:

11. What is the relative uncertainty for \(v = 12.25 \pm 0.25 \text{ m/s} \)?

12. What is the absolute uncertainty if the mean value is 120 s and the relative uncertainty is 5%?

13. Given the following measurements, which one has the highest absolute uncertainty and which one has the highest relative uncertainty?

\[
l = 10.0 \pm 0.2 \text{ m} \quad l = 10.0 \text{ m (1.00 \pm 0.03)} \\
l = 7.24 \text{ m (1.00 \pm 0.04)} \quad l = 12.5 \pm 0.25 \text{ m}
\]

14. Given the following measurements which one has the highest absolute uncertainty and which one has the highest relative uncertainty?

\[
l = 10.0 \pm 0.2 \text{ m} \quad t = 7.5 \pm 0.2 \text{ s} \\
d = 5.6 \text{ cm (1.00 \pm 0.04)} \quad v = 6.4 \times 10^6 \text{ m/s (1.00 \pm 0.03)}
\]

Caution: Don’t get tricked!

Explanations:

15. Explain, using your own words, why the uncertainty decreases as you average over several measurements (you might want to take a look at the appendix).
16. You measure the speed of light and get as a result $c = (2.25 \pm 0.25) \times 108 \text{ m/s}$. The value you find in books is $c = 299792458 \text{ m/s}$. Using these values explain the difference between the uncertainty of your measurement and its error!

7 Appendix

7.1 Clarification of 2/3 Rule

To find the true uncertainty, we are really interested in the standard error of the mean, i.e. how likely it would be for a newly measured average value to be close to our original value were we to perform the experiment again. The proper way to figure this out would be to get say a thousand friends to perform this experiment in the same way, each using the same number of data points, and then compare the results of everyone. Each student would calculate his or her own mean, and they would likely all be clustered around some central average. We could then examine the spread of this cluster of means using the 2/3 rule, and we’d have a quantitative measure of the uncertainty surrounding any single student’s measurement.

While it’s usually impractical to get 1000 friends together to repeat an experiment a thousand times, it turns out that the uncertainty (or “standard error”) of the mean can be estimated with the following formula:

$$\text{Standard Error Of The Mean} = \frac{\text{Uncertainty Of Single Measurement}}{\sqrt{N}}$$ \hspace{1cm} (1.16)

where “N” is the number of data points in your sample, and “Uncertainty Of Single Measurement” is the uncertainty calculated via the 2/3 method. The “\sqrt{N}” term should make sense qualitatively – as we take more and more data points, our measured average becomes less and less uncertain as we approach what should be the “global” mean.

7.2 The “Correct” Way to Add Uncertainties

The rules we’ve given for propagating uncertainties through a calculation are essentially correct, and intuitively make sense. When adding two quantities together, if one has an uncertainty of Δx and another has an uncertainty of Δy, the sum could indeed range from $(x + y) - (\Delta x + \Delta y)$ to $(x + y) + (\Delta x + \Delta y)$. This implies that the proper way to find the uncertainty of $(x + y)$ is to add their respective absolute uncertainties.

There is, however, a small problem – this overestimates the uncertainty! Since x and y are equally likely to be wrong by either a positive amount or a negative amount,
there’s a good chance that the respective errors of each variable will partly cancel one another out. To account for this, a more accurate way to estimate uncertainty turns out to be to add uncertainties in quadrature. This means:

Adding/Subtracting Quantities

\[(A \pm \Delta A) + (B \pm \Delta B) = (A + B) \pm \sqrt{(\Delta A)^2 + (\Delta B)^2}\]

Multiplying/Dividing Quantities

\[A \left(1 \pm \frac{\Delta A}{A}\right) \times B \left(1 \pm \frac{\Delta B}{B}\right) = (A \times B) \left(1 \pm \sqrt{\left(\frac{\Delta A}{A}\right)^2 + \left(\frac{\Delta B}{B}\right)^2}\right)\]

While this method gives a closer approximation to what the true propagated uncertainty should be, it is clearly a more complex calculation. In the limited time available to complete your experiment and lab report, you may use the simpler, earlier uncertainty calculation method provided, and avoid this complicated calculation. But do remember that the simpler method overestimates the total uncertainty.

8 Comments for TA

8.1 Required Error Propagation

1. Calculate error in the gravitational constant \(g\) by propagating uncertainties in period \(\tau\) and length \(l\). Do this for both \(\tau\) measurements.

2. Calculate error in reaction time by propagating uncertainties in distance \(s\). Find the uncertainty in distance using the 2/3 estimate.

8.2 Required Prelab Questions

1. Complete prelab questions 5, 8, 9, 13, 15.

8.3 Additional Comments

1. Suggest that students allow the pendulum to oscillate for 5 full periods before measurement to ensure simple harmonic motion.
Experiment 1-2
Forces

1 Introduction

Forces are an essential element in the study of physics. The concept of force is familiar: effects of forces on the human body are part of everyday experience. But force has a precise meaning; forces can be measured, combined, and evaluated in exact ways. This laboratory is intended to demonstrate a few of the many examples of natural and familiar forces discussed in the lecture course.

Today’s experiments illustrate the nature of several forces and how they are measured. First, we deal with the vector nature of forces and note how a situation of zero net force at a point requires that all forces in each direction must balance. The forces arise from the gravitational attraction to the earth (weight) of objects, which are transmitted to a point through string tension.\(^1\)

Next, we work with the force arising by stretching or contracting a spring. This kind of force has more general applications than springs, in that the “elastic” nature of collisions (like a tennis ball bouncing on the floor) arises from spring-like forces. You will measure the quantitative relationship between the force applied and the subsequent displacement of a spring.\(^2\)

Finally, we deal with a dynamic system where we use computer data acquisition to measure the acceleration caused by various forces acting on a cart traveling along an inclined plane. These forces include kinetic friction, the normal force, and gravitational attraction.

2 Theory

2.1 Vector Forces

In the first part of the experiment, we measure three vector forces and show that when the system is stationary, the sum of all forces is zero. Vectors have length and direction, and therefore are usually represented by an arrow – its length corresponds to the magnitude of the vector, while its direction (from tail to head) corresponds to the direction of the vector. To add two vectors graphically, simply place the tail of one vector at the head of the other. Then start from the same origin and attach the

\(^{1}\)See Chapters 5 and 12 of *Fundamentals of Physics* by Halliday, Resnick & Walker.

\(^{2}\)See Section 7-7 of Halliday, Resnick & Walker.
two vectors in the reverse order, we must arrive at the same final point. From the parallelogram formed by this procedure, the arrow along the main diagonal represents the sum of the two vectors. (The other diagonal is the difference of the two vectors.)

![Figure 1: Addition of Forces](image)

Vectors can also be added algebraically. If a vector is described in a given basis, or specific coordinate axes, e.g. \(\mathbf{u} = (1, 2) \), you must add a second vector in the same basis. For example, if the second vector has components \(\mathbf{v} = (3, -3) \), the components of the sum, or resultant, vector are \(\mathbf{u} + \mathbf{v} = (1 + 3, 2 + (-3)) = (4, -1) \).

Just as every two added vectors give a vector sum or resultant, the opposite is also true: every vector can be split into two “components” at right angles to each other. This is an important tool we use in physics repeatedly. You may choose, for the convenience of doing the problem, along which perpendicular directions to split the vector. There is usually a favorable choice of perpendicular basis vectors in which the problem can be described most easily.

2.1.1 Parallax

In the first part of this lab, we must draw images on paper of strings located above the paper. It will at first appear that there are many different possibilities of where to draw the images of the strings. If you draw lines on the sheet that seem directly below the strings when your head is in a given position, if you move your head a few centimeters left or right you will see that the lines are no longer covered by the strings. This effect, in which a closer object (here the string) seems to move relative to a distant background (here the sheet on which you draw the line) is called \textit{parallax}. We will see
effects of parallax several times during these labs, so it is important to learn how to handle it.

Where should the lines be drawn? A unique prescription for where to place the lines is provided by the instruction to always look straight down on the string. Now we must determine how we know when we are looking straight down on the string. Use a small mirror and place the mirror on the sheet directly under the string. Both the string and the image of the string in the mirror are visible. As your head moves left and right, the mirror image of the string moves relative to the string. When your head is located so that the string and its mirror image exactly overlap, you are looking straight down. Make two small marks beside the mirror where the image of the string enters and leaves the mirror. Then, remove the mirror and draw a line through the two points on the paper with a ruler. This line is the correct image of the string.

2.2 Springs

Ideal springs turn out to have a very simple relation between the force F applied to them and the distance s they are stretched. This linear relationship, called “Hooke’s Law,” is expressed by:

$$F = k \cdot s$$

(2.1)

where k is known as the “spring constant”. It is the same for a specific spring, and its value depends only on the properties of that spring. In this lab, we will measure the forces necessary to stretch a spring different distances, and from these we will determine the spring constant of the spring.

2.3 Best-Fit Line

In most research laboratories, plotting measurements on a graph is found to be the preferred method of reviewing the validity of data and quantitatively measuring the relationship between the variables. We often have some prior idea of the expected relationship between the variables. In these labs, this expected relationship is almost always arranged to be a straight line. But even if we know that ideal points fit on a precise straight line, real measured data points will not lie on a single line – because the measurements always have intrinsic uncertainty. Therefore when the points are plotted, we should include error bars to indicate the uncertainties in the measured points. Because real measurements do not all lie on a single straight line, there are a variety of possible lines you might put through the data points. Some examples are shown in the figure below.

Which line represents the best fit? There is actually an exact mathematical procedure to obtain the best-fit line, but since this is a tedious calculation (and usually done
on a computer), we will introduce some useful “eyeball” methods that can be done easily, during the lab session without a computer. These techniques are sufficiently precise for our purposes, and with some experience they give results surprisingly close to the best computer fits.

How does one draw the best line? First, try to draw a line with as many points (with uncertainties included) lying above the line as below it. The gauge of how close the line is to a point is given by the uncertainty associated with that measured point. However, all the points at the left end should not lie on one side of the line with all the points at the right end lying on the other side. As a rule of thumb, roughly 2/3 of the points should have the line passing through the uncertainties.

How to estimate the uncertainty on the slope of the best-fit line you draw using the above method? To do this we should estimate the spread of the slope, or maximum and minimum possible slopes that one can conceivably deduced from the graph. Half the difference between the minimum and maximum slopes is a good estimate of the slope uncertainty.

Remark: Often in our experiments the data points will not look as nice as in the above examples. One or several points may not be close to any best-fit line you try. Such anomalous points may occur, for example, because of a mistake in measuring. In such cases, it is acceptable to ignore these anomalies when estimating the best-fit line. (Of course you must note this fact down in your lab report) Dropping anomalous points must be done with extreme care and only rarely\footnote{More than once, data points that did not behave as theory predicted turned out to be new effects and led to Nobel prizes!} It is better to choose a line with as many points above the line as below. If you are not sure of your measurements, it is better to re-measure or to take more data points.
2.4 Inclined Plane

In the last part of this lab, we will be looking at the prototypical dynamic system in motion: the inclined plane. When a block slides down an incline there are typically three forces at play: the gravitational attraction to the center of the earth, F_g; the normal force that prevents the block from going through the inclined plane, F_N; and the kinetic frictional force that slows the descent of the block, F_k. Since the net force on the block must be parallel to the surface, using a tilted coordinate system, as in Figure 3 makes it clear that the net force, $F_{net} = F_g \cdot \sin(\theta) - F_k = F_g \cdot \sin(\theta) - \mu_k \cdot F_N$. Since the normal force, $F_N = F_g \cdot \cos(\theta)$ and $F_g = m \cdot g$ we can derive the following:

$$F_{net} = m \cdot g \cdot \sin(\theta) - \mu_k \cdot m \cdot g \cdot \cos(\theta) = m \cdot a \quad (2.2)$$

Consequently, the acceleration of the block will only depend on the angle of the incline and coefficient of kinetic friction, μ_k. If we solve for μ_k we get the following relationship:

$$\mu_k = \tan(\theta) - \frac{a}{g \cdot \cos(\theta)} \quad (2.3)$$
3 Procedure

3.1 Addition of Forces

In the first part of the experiment, we deal with three different forces. The force due to an unknown weight is balanced by two known forces. We will check the result by graphically adding the known forces. Using vector components, we check that the components of the three vectors in equilibrium cancel (within the uncertainty).

![Experimental Setup](image)

Figure 4: Experimental Setup

The equipment includes a wooden board to which three pulleys are clamped. Over each pulley, we place a string with a weight. Choose two different known weights and attach them to two of the strings (you might begin with a 100 g and 150 g weight for example). The three strings are tied together over the board at a “node”. Move the node, where the strings join, around gently and try to find the equilibrium position. (The position at which the node no longer moves, or the location to which the node returns if displaced a few cm, represent this equilibrium position.) Place a sheet of paper on the wooden board, under the strings. In order to have room to record the string locations, make sure that the node is approximately in the middle of your paper and the wooden board. (You may need to move the pulleys to accomplish this.)

You are going to draw vector representations of the forces due to each of the weights. Draw three line segments on your paper, corresponding to the three strings, using the method of parallax-free reading. After removing your paper, extend the lines so that they intersect at the node. Then, draw two arrows along the lines corresponding to the strings holding the known masses, with lengths proportional to the masses on the
strings. Choose a scale that is appropriate for your weights and the size of the paper. These arrows are vectors representing the forces due to the known weights.

Add these two vectors graphically using the parallelogram method described above to obtain their resultant force. The resultant of these two vectors should be opposite in direction but equal in length to the vector representing the unknown force (from the unknown mass).

- Are the two directions opposite? How far off are they?

- Measure the length of the resultant vector. From this length, calculate the magnitude of the unknown mass, and include uncertainty.

On the electronic scale, measure the unknown mass and compare to the mass determined by the parallelogram method.

- Are they the same? Should they be the same?

Now draw an arrow along the third (unknown) direction with length corresponding to the mass of the unknown weight you measured on the electronic scales.

- Specify the x and y components of all three vectors. Choose your x- and y-axis to make the work simplest!

- Determine if the sum of all the x components gives zero within uncertainty. Do the same for the y components. (Remember that components from two vectors pointing in opposite directions have opposite signs.)

- Note the main sources of error.

3.2 Spring

In the second part of the experiment we plot applied force vs. stretch of the spring, make a best-fit straight line and measure its slope. You should understand the physical interpretation of this slope.

General Comment: Every line is fully determined by its slope and intercept. Whenever you obtain a best-fit line, you should check if these two quantities are reasonable. Also, these two quantities often have a physical interpretation that you should understand.

Pick a spring and hang it from the pivot point. You will be using this spring for the entire experiment. Attach a 100 g weight to the bottom of the spring. Adjust the measuring ruler so that a calibration mark lines up with the lower end of the spring.
Attach the force meter to the lower end of the spring and pull the spring so that it aligns with distances you want to use as measuring points. You can use the mirror from the first part of the experiment to get a parallax-free reading of the position of the spring. Your uncertainty in the position should then be as small as the resolution of the ruler.

Read the force meter to determine the force you are applying to the spring by pulling it, and estimate the uncertainty in the reading of the force meter.

- Record a total of 5 points with associated uncertainty.
- Draw a force vs. distance (stretch) graph. Don’t forget the error bars!
- Draw a best-fit line through the data points. Draw the maximum and minimum slope on the graph. Do these in whichever order you find most convenient.
- Record the value of the slope and determine its error. Interpret its physical meaning.
- What is the value of the intercept of your line (where the distance is zero)? How do you interpret this when it is non-zero?
- Give the value of the spring constant including uncertainty.
- Note the main sources of error.

3.3 Inclined Plane

![Figure 5: Inclined Plane Apparatus.](image-url)
1. Set up the PAStrack and Inclined Plane Accessory as shown in Figure 5 with a Photogate Head and Photogate Bracket. Elevate the PAStrack to a shallow angle (a few degrees).

2. Check if the inclined plane is leveled. This is done by placing the level across the end of the inclined plane (i.e. perpendicular to the long axis). See if the bubble in the liquid is in between the two lines of the tube. If not, adjust the screws of the inclined plane until the bubble is centered.

3. Select a Friction Tray and record its bottom material in Table 2.1. Tape the Smart Timer Picket Fence to the Friction Tray so that the 1 cm picket fence pattern is at the top.

4. Set the Friction Tray on the PAStrack and adjust the Photogate Head so that the 1 cm ‘picket fence’ pattern of the Smart Timer Picket Fence will interrupt the photogate beam as the Friction Tray moves through the photogate. Put the Friction Tray at the top of the track where it will be released from rest.

5. Raise the angle of the the PAStrack so that when the Friction Tray is released from the top, it accelerates down the plane. We recommend an incline angle of at most 20 degrees. Record the angle in Table 2.1.

6. Set up the Photogate Head and open the DataStudio file “Inclined Plane.”

7. Start recording data. Release the Friction Tray from rest. Stop recording data.

8. Complete three trials of the data recording procedure for the first Friction Tray. Use the same release position each time.

9. Move the Smart Timer Picket Fence to the second Friction Tray. Record the kind of material that is on the bottom of the tray. Adjust the angle of the PAStrack so that when the Friction Tray is released from the top, it accelerates down the plane. We recommend an incline angle of at most 20 degrees. Record the angle.

10. Complete three trials of the data recording procedure for the second Friction Tray.

11. Determine the acceleration for each trial at each angle and record it in Table 2.1.

12. Calculate the average acceleration for each Friction Tray and use the average acceleration and the angle to determine the coefficient of kinetic friction, μ_k. Enter data into Table 2.1.
Material
Angle
a_{trial1}
a_{trial2}
a_{trial3}
$a_{average}$
μ_k

Table 2.1: Inclined Plane Data Table.

13. Which material has a higher coefficient of friction? The coefficient of friction for such a plastic-on-plastic combination is $0.2 - 0.4$. How does this compare with your result? Discuss likely sources of error, and estimate the impact these had on this experiment.

4 Lab Preparation Examples

Vectors:

1. Add the following two vectors algebraically:

 $u = (1, 2), \quad v = (2, -5)$

2. Draw the two vectors described above and add them graphically.

3. Graphically add the two vectors below:

4. Draw the two vectors $u = (3, -5), \quad v = (-1, 7)$ and graphically check if their sum points in the same direction as the vector $w = (-1, -1)$.

5. Split the vectors below into the two given components (x, y) and add them up:

6. Does the sum of the 5 forces F_1, \ldots, F_5 below vanish?

 $F_1 = (1, 2, 3) \text{ N}, \quad F_2 = (1, 0, -5) \text{ N}, \quad F_3 = (0, -3, 7) \text{ N},$

 $F_4 = (-3, 1, 0) \text{ N}, \quad F_5 = (1, 0, 0) \text{ N}$
7. Show graphically that the sum of the three vectors \(\mathbf{u} = (1, -2), \mathbf{v} = (-3, 4), \mathbf{w} = (2, -2) \) vanishes.

8. Does the sum of the following three vectors vanish within uncertainty?

\[\mathbf{u} = (10 \pm 1, -5 \pm 1), \quad \mathbf{v} = (-13 \pm 1, 7 \pm 1), \quad \mathbf{w} = (7 \pm 1, -3 \pm 1) \]

Spring:

9. If a spring stretches 5 cm when you put 100 g on it, what is the spring constant?

10. If you set a mass of 10.0 \(\pm \) 0.1 g on a spring with spring constant, \(k = 5.0 \pm 0.2 \) N/m, how long will it stretch?

Best-Fit Line:

11. For the following force versus 1/distance diagram draw in the maximum and minimum slope and the best-fit line.
12. Fill in the table and draw a force vs. stretch diagram for the following data. Draw the maximum and minimum slope and the best-fit line. Give the value of the spring constant including uncertainty (via maximum and minimum slope curve).

<table>
<thead>
<tr>
<th>Stretch in cm</th>
<th>Force in N</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>1 ± 2</td>
</tr>
<tr>
<td>25</td>
<td>3 ± 1</td>
</tr>
<tr>
<td>50</td>
<td>4 ± 2</td>
</tr>
<tr>
<td>75</td>
<td>8 ± 1</td>
</tr>
<tr>
<td>100</td>
<td>9 ± 1</td>
</tr>
</tbody>
</table>

Explanations:

13. Explain why a line fit to many measurements gives a better result than a single measurement.

14. Put a string through a book with the binding facing upwards. Try to pull the strings until they are horizontal. Why is this impossible (your string will usually break)?

5 Comments for TA

5.1 Required Error Propagation

1. Calculate error in the unknown mass M by propagating uncertainty in measured lengths.

2. Calculate error in the force equilibrium sum by propagating uncertainty in measured lengths.

3. Calculate error in the spring constant using the method of max-min slope for linear fits. Make sure to include error bars on both the x and y axis.

4. Calculate error in the coefficient of friction by propagating uncertainty in acceleration from the statistical definition of standard deviation (given below).

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (a_i - a_{avg})^2}$$ \hspace{1cm} (2.4)

Where a_{avg} is the average acceleration you calculated in lab. N is the total number of data points.
5.2 Required Prelab Questions

1. Complete prelab questions 3, 8, 10, 11, 14.

5.3 Additional Comments

1. Advise students to only use small angles for the coefficient of friction acceleration measurement (photogate has issues with higher angles, so keep $\theta < 15$ degrees).

2. Explain the max-min slope method for determining uncertainty in linear fits to students.

3. Check the photogate ruler length preset on computer. This has caused errors in measuring acceleration in the past.

4. Make sure students use the correct photogate tick side.

5. Make sure students restore the default settings in the PAStrack software.
1 Introduction

In this experiment you will study motion with constant velocity and motion with constant acceleration. Ordinarily, it is difficult to examine these kinds of motion with precision, since objects in free fall tend to move too rapidly, and frictional forces arise in most everyday situations. These factors hinder a direct observation of the underlying physical principles of motion, and in fact this is one of the reasons why these principles were poorly understood until Galileo’s famous experiments. In this lab, it will be possible to study motion in the absence of almost any friction by using a rider on an air-track. The air-track has rows of small air jets running down its side, which support the rider on a thin film of air and allow it to float just above the track – minimizing contact and thereby minimizing friction. When the track is level and the rider is given a slight push, it will move with constant velocity; when the track is slightly inclined, the rider will experience a small acceleration due to the component of gravity which is parallel to the track.

To study the motion of the rider, you need to be able to make accurate measurements of its position at given intervals of time. This is done using a sonar device called the Sonic Ranger. This apparatus sends out discrete pulses of sound waves, which are reflected back by the object or objects in its path. The Sonic Ranger is in turn connected to a computer, which calculates the distance to the object based on the time it takes the signal to leave the sonar module and return. If a series of such measurements is made in rapid succession, then the computer can reconstruct the motion of the rider over some time interval, and this information can be used for other calculations, such as the “instantaneous” velocity or acceleration of the rider as a function of time. An essential part of this lab is becoming familiar with using the computer to obtain and analyze data. The computer offers many extraordinary advantages over manipulating data by hand, but you can benefit from it only if you have learned how to use it effectively and understand its limitations.

2 Set-up

2.1 Getting Started

Some of the laboratory computers require you to log on before you can view and use the desktop screen. To log on, use the user name student and the password student. When the desktop screen is visible, double click on the VELOCITYLAB icon to load
2. Set-up

Figure 1: Schematic Diagram of the Air Track

the Sonic Ranger software. (In this lab, all mouse clicks use the left button.) The screen shown in Figure 2, with two empty graphs displayed, should now appear. The computer is now ready to take data. The top graph will show position (meters) versus time (seconds), while the bottom graph will show velocity (meters/second) versus time (seconds).

To begin taking data, single click on the screen’s Start button. As the data are being collected, both graphs will display the measurements. To stop taking data, single click on the screen’s Stop button (the button that replaced the Start button). After analyzing the graphs, you can erase the data and begin collecting new data by single clicking on the Start button.

The Sonic Ranger measures and records the position of an object every 0.05 seconds. The graph of position versus time is then obtained directly from these position measurements. The software constructs the graph of velocity versus time by calculating the average velocity (the change in distance divided by the time interval) based on the successive position measurements. Since the position measurements are taken very closely together, the calculated average velocity for each interval is reasonably close to the instantaneous velocity at any instant within that interval, as long as the rate of change of the velocity is small.

The Sonic Ranger has two modes of operation, which are controlled by the switch on top of the Sonic Ranger module. Move the switch to the person icon to take good-quality data from a large object (such as a moving person) using a wide sonar beam. Move the switch to the cart icon to take good-quality data from a small object (such as a rider moving on an air track) using a narrowly focused sonar beam.

You can now begin taking data and displaying your results by trying the following simple experiment. Switch the Sonic Ranger to the person mode. Stand about six to eight feet away from the Sonic Ranger and have your lab partner point it toward you. When your partner single clicks the Start button to begin taking data, start moving
slowly toward the Sonic Ranger. Try to see if you can move with constant velocity. Your partner can end the data collection after you have walked for about ten seconds. Can you tell from the graphs whether or not you have been reasonably successful in moving at constant velocity? You may have to try a few times.

Note that the position, velocity, and time axes will automatically rescale so that all of the data points are visible on the graphs. To change a graph scale manually, just click and drag any number on the appropriate axis. Clicking and dragging the axis line will move the axis in the display window. Notice that the time axes of both graphs will rescale and move together so that the time axes of the position and velocity graphs are always aligned.

Collect some more data by using a more complicated motion. After each data run, compare the distance and velocity graphs and be sure that you understand how the
shape of the velocity graph can be predicted from the position graph. For each data run, you may have to manually rescale the position and/or velocity axes to have an appropriate display of the graph details. For example, a very small non-zero velocity might appear as zero meters/second if the velocity scale is not sufficiently expanded.

Before starting the next part of the experiment, you may want to reset your display settings to their original default values. To do this, simply quit the program by single clicking on the pull-down File menu and then choosing the Quit option. A dialog box will ask if you want to save the activity. Choose the No option and the screen will return to the desktop display. (You cannot save the activity, and choosing the Yes option or the Cancel option will just make the dialog box disappear without closing the program.) You can double click on the desktop’s VELOCITYLAB icon to restart the program. You may follow this procedure whenever you want to clear the screen and return to the original default settings.

2.2 Setting Up the Sonic Ranger for Use with the Air Track

Set the Sonic Ranger just at the right end of the track, and switch the Sonic Ranger to the cart mode. Adjust the location and tilt of the device so that the sonar beam travels horizontally along the center line of the air track. This will allow you to make sure the Sonic Ranger is able to detect the rider when it is at the far end. Turn on the air for the air-track and set the rider at the far left end of the track. Prop up the right side of the track so that the rider stays at the left end. Follow the same procedure as you did before to collect data. The distance from the Sonic Ranger to the flag on the rider will be approximately 1.8 m, so if it is aimed correctly you should see a stationary object about 1.8 m away on the graph. If not, try to re-aim it while you are taking data or try taking data again. You can then check the alignment more precisely by giving the rider a small push along the air-track, and observe whether the computer plots the rider’s position smoothly throughout the length of the track. If there are “static-like” jumps in the plot, then the sound waves are not reflecting properly back to the Sonic Ranger, and you will need to align it more carefully.

2.3 A Note about Distances

The Sonic Ranger is unable to detect objects that are too close, because it requires a certain amount of time between sending and receiving signals. Close objects will reflect signals too early for the Ranger to interpret the data correctly. Therefore, always work with distances greater than 20 cm from the Sonic Ranger to insure that the distance to the object is determined correctly.

Note also that the scale on the air-track increases as you read toward the right. Since the Sonic Ranger is aimed left, its scale increases toward the left, with the origin
at the faceplate of the module, not the right end of the track (see Figure 3). It is extremely important that you keep these two scales separate in your work. You should use the readings from the Sonic Ranger (which the computer indicates in meters) for all of your experimental calculations, and use the scale on the air-track (which is marked in centimeters) only for positioning the rider in the same place when you are repeating an experiment over several trials.

Figure 3: The measurement scale of the Sonic Ranger starts at its faceplate, and increases toward the left, oppositely of the ruler on the air track

2.4 A Note about the Rider and Air-Track

It is important that you take care when using the rider and air-track. Don’t let the rider sit on the track when the air is off, and don’t let the flag-side of the rider collide with the elastic bumper. Both of these can cause the rider and air-track to scrape against each other, leaving scratches which permanently damage the equipment.

3 Motion with Constant Velocity

3.1 Leveling the Air Track

To study motion with constant velocity it will be necessary to level the air-track as carefully as possible so that the rider does not tend to accelerate in one direction. The left side of the air-track has two adjustable feet; the right foot is not adjustable, but you may raise it by stacking sheets of paper beneath it. (Avoid using the metal shims for leveling the track, since you will be using them later to raise it to a fixed inclination.) The air-track has been machined to remain extremely straight along its entire length, but because the rider is also extremely sensitive to the slightest variation along the track, you will find that the rider sometimes remains stationary in one region of the track but tends to drift when it is in another region. It is not always possible to completely level the track, but you should try to minimize these irregularities by
making sure that the drift is as small as possible in most parts of the track, and that
the direction of the drifts are more or less random. (If all the drifts tend in the same
direction, then this indicates that you can make the track more level.)

3.2 Taking Data

Once you are satisfied that the track is sufficiently level, set the rider at the 150 cm
mark. Begin collecting data, and then give the rider a gentle push toward the left.
Make sure that you are able to take data over a substantial portion of the return trip
after it has bounced off the elastic bumper at the left end, and also make sure that the
position data is smooth and without jumps.

- Is the velocity graph what you expected? The time scales of the two graphs are
 always the same, so you should be able to see how the rate of change in the
 displacement graph corresponds to the velocity.

- How does motion with constant velocity on the air track compare with trying to
 walk with constant velocity?

3.3 The Coefficient of Restitution

When two objects collide and bounce away from each other, they tend to lose some
of their energy in the collision, and the rebound velocity between the two objects is
therefore less than the initial velocity between them. This is why objects that are
dropped will sooner or later stop bouncing. The elasticity of the collision can be
indicated by e, the coefficient of restitution, which is defined as the speed after the
collision divided by the speed before the collision:

$$e = \frac{|v_f|}{|v_i|}$$

A perfectly elastic collision, one in which no energy is lost, would therefore have a
coefficient of restitution equal to one; an elastic “super” ball is a good example of an
object whose coefficient of restitution in many collisions is often close to one. You can
calculate e for the case of the rider colliding with the elastic bumper by using the data
you collected in this experiment.

3.4 Using the Smart Tool to Read off Data Points

To use the Smart Tool in one of the graphs; select a graph (position or velocity) by
clicking in the first quadrant of the graph and then clicking on the menu’s Smart Tool
button (this should be the second square button on the third line of icons). This will
activate crosshairs that can be used to select a data point and display its coordinate
data pair. As you get closer to a data point, the Smart Tool will “gravitate” toward that data point. To change the position of the crosshairs of the Smart Tool, move the cursor over the center of the Smart Tool until the pointer turns into two crossed double arrowheads and a hand. Drag the cross hairs of the Smart Tool to the desired location. To deactivate the Smart Tool in a graph that has been selected, just click the Smart Tool menu button again.

Note that if you activate the Smart Tool in the second graph before the Smart Tool has been deactivated in the first graph, cross hairs will appear in both graphs simultaneously and can be moved together along the common time axis.

3.5 Determining the Coefficient of Restitution

You should calculate e from the data just collected using two different methods.

In the first method, use the position versus time graph with the Smart Tool to read off and record the (t, x) coordinates of 5 reasonably separated points before the bumper collision and 5 reasonably separated points after the collision. Choose representative points that are not part of extraneous effects (which occur at the ends of the motion, in the small region of the collision, and at irregularities in the air track itself). On graph paper, plot the (t, x) coordinates of the 5 points before the collision, draw a best fit straight line through the 5 points, and then determine the initial velocity from the slope of this line. Do the same for the 5 points after the collision and determine the final velocity.

- Calculate e from the ratio of the two velocities.

In the second method, use the velocity versus time graph with the Smart Tool to read off and record the velocity values for 5 reasonably separated points before the collision and 5 reasonably separated points after the collision. Once again, choose representative points that are not part of extraneous effects. Average the 5 values before the collision and then average the 5 values after the collision.

- Calculate e from the ratio of these two average values.

- How would you explain any differences between the results from the two different ways of calculating e? Which method do you think gives a more accurate value for e?

4 Gravitational Acceleration

A small constant force can be applied to the rider by inclining the track slightly. The component of gravity which acts on the rider parallel to the air-track is equal to g, as indicated in Figure 4.
4. Gravitational Acceleration

Use a few of the shims provided to elevate the right side of the air-track. NOTE: All of the shims are 1.24 mm thick.

Note that \(\sin \theta \) equals the height of the shims divided by the length of the track between the supports, which in this experiment is exactly 1.0 m (see Figure 5) so \(\sin \theta \) is equal to the height of the shims.

A convenient method for taking data is as follows. Set the rider on the air track at a given point, say at the 150 cm mark, and release it. Start taking data and record the motion as the rider goes down the track, bounces off the elastic bumper, goes back up the track, and then heads back down the track.

You should print out the resulting graphs on the screen to include in your lab report. To print: click on the File menu, then choose the Print option, and finally select OK in the dialog box. The laboratory’s network printer is located on the side of the room (printouts are labeled according to the number on your setup’s computer).

You can calculate the acceleration along the air track from the data displayed on the computer screen. Using the Smart Tool simultaneously in the position and the velocity graphs, read off and record the \((t, x)\) coordinates and the \((t, v)\) coordinates at 5 different times during the upward-downward motion that occurred after the initial bumper collision. Choose 5 representative points that are reasonably separated and
are not part of extraneous effects (which occur at the ends of the motion, in the small region of the collision, and at irregularities in the air track itself). For each point of time chosen, be sure to use the \(x\) value and the \(v\) value at the same value of the time (to an accuracy of about 0.025 seconds). The acceleration along the track can now be calculated in two different ways.

In the first method, use the equation

\[
x = x_0 + v_{x0}(\Delta t) + \frac{1}{2}a_x(\Delta t)^2
\]

(3.2)

and solve for \(a_x\), and then calculate four values for \(a_x\) by using the data for four different time intervals. Find the average of \(a_x\) for this method. What value does this \(a_x\) give for \(g\)?

In the second method, use the equation

\[v_x = v_{x0} + a_xt\]

(3.3)

On graph paper; plot the \((t, v)\) coordinates of the 5 times chosen, draw a best straight-line fit to the 5 points, and then determine the \(a_x\) from the slope of this line. What value does this \(a_x\) give for \(g\)?

• Are your values for \(g\) close to the accepted value?

• Discuss possible sources of error in each of the two methods.

5 Comments for TA

5.1 Required Error Propagation

1. Calculate error in the coefficient of restitution by propagating uncertainties due to initial and final velocities \(v_i\) and \(v_f\). Uncertainty in initial and final velocities are to be found by the max-min method for linear fit error. Make sure both the \(x\) and \(t\) axes have error bars when determining fit error.

2. Calculate error in the coefficient of restitution by propagating uncertainties due to initial and final velocities \(v_i\) and \(v_f\). Uncertainty in initial and final velocities are to be found by the 2/3 method.

3. Calculate error in \(g\) by propagating uncertainty in \(t\) only. You can average the uncertainties in \(a\) just as you average \(a\) values.

4. Calculate error in \(g\) by propagating uncertainty in \(a\). Uncertainty in \(a\) is to be determined using the max-min method for linear fit error. Make sure both \(t\) and \(v\) axes have error bars.
5.2 Additional Comments

1. Have the students derive the coefficient of restitution.

2. Try to measure velocities relatively close to ranger. Ranger sometimes fails at larger distances.
Experiment 1-4
Projectile Motion and Conservation of Energy

1 Introduction

In this experiment, we use the trajectory equations of a body in two-dimensional free fall to predict where a projectile hits the ground\(^1\). The initial (launch) velocity of the projectile is determined by applying the law of conservation of energy\(^2\) for the projectile traveling through a long bent tube. We compare the predicted and measured location after the fall. This lab should demonstrate the predictive power of applying physical principles correctly, show that predictions correspond to something in the “real world”, and provide insight about deciding what is important in making a measurement.

Remark: You must prepare some derivations at home; otherwise, you may have trouble finishing the lab in the time given.

2 Physical Principles

2.1 Conservation of Energy

One of the most fundamental principles of physics requires that total energy be conserved in all physical processes. This principle is sometimes difficult to apply since there are many different kinds of energy (potential energy, kinetic energy, rotational energy, heat, chemical energy, and mass\(^3\)), and energy can be transformed from one kind to another. We will deal primarily with the first three types of energy, and with a small loss due to friction (which usually ends up converted into heat). In the previous lab you saw how conservation of momentum is sometimes more useful than conservation of energy; in this lab, we will focus on a situation where conservation of energy is the appropriate law to use.

The kinetic energy of a point particle moving with velocity \(v\), is given by \(E_{\text{Kin}} = mv^2/2\). Because the rolling ball used in this experiment is not a point object, we need to take into account its rotational motion. This is discussed in the next section.

The potential energy for an object near the earth’s surface is given by \(E_{\text{Pot}} = mgh\), where \(h\) is the height above an arbitrarily chosen level. This means that when an

\(^1\)See Sections 4-5, 4-6 of *Fundamentals of Physics* by Halliday, Resnick & Walker.
\(^2\)Chapter 8 of Halliday, Resnick & Walker.
\(^3\)This is the content of Einstein’s famous formula: \(E = mc^2\)!
object drops from a vertical height h_2 to h_1, $\Delta h = h_1 - h_2$, the loss in potential energy is $mg\Delta h$.

Some energy is always lost due to friction. If we label the friction energy loss W, it follows that:

$$Gain in K.E. = (P. E. lost) - W$$ \hspace{1cm} (4.1)$$

2.2 Estimating the Friction Loss

If there were no friction, all the loss in potential energy ($mg\Delta h$), as the ball rolls from the release point to the launch point, would be converted to kinetic energy. However, because of friction, some of the energy will be dissipated. We need a technique to determine the energy lost to friction. Here, we find the orientation of the track such that when released from the top, the ball just comes to rest at the lower end of the track. When the ball comes to rest, we know that the kinetic energy is zero, so the difference in potential energy between the initial and final positions must have all been lost to friction. Then, we determine the vertical distance traveled by the ball $\Delta h'$ and $mg\Delta h'$ equals the energy lost to friction. If we assume that the same amount of energy is lost to friction when the track is tilted more steeply, we can use $W = mg\Delta h'$ for all tilts. It follows that:

$$Gain in K.E. = (F.E. lost) - W$$ \hspace{1cm} (4.2)$$

$$= mg\Delta h - mg\Delta h'$$ \hspace{1cm} (4.3)$$

$$= mg(\Delta h - \Delta h')$$ \hspace{1cm} (4.4)$$

Remark: There are three types of ball in the experiment: steel (or brass), aluminum and plastic. You have to measure the friction separately for each ball!

2.3 Kinetic Energy including Rotation

In this experiment, we deal with a rolling ball. We need to account for the rolling motion, so that there are two contributions to the kinetic energy:

$$Kinetic Energy = Kinetic Energy of center of mass + Kinetic Energy of rotation$$ \hspace{1cm} (4.5)$$

This relationship takes the analytic form:

$$E_{\text{Kin}} = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2$$ \hspace{1cm} (4.6)$$

where m is the total mass of the object, v is the velocity of the center of mass, I is the moment of inertia ($I = 2mR^2/5$ for a sphere), and ω is the angular velocity of rotation.
(For a rolling ball that is not sliding, \(\omega = v/R \)). The total kinetic energy of the rolling sphere is:

\[
E_{\text{Kin}} = \frac{1}{2} mv^2 + \frac{1}{2} \left(\frac{2}{5} mR^2\right) \left(\frac{v}{R}\right)^2
\]
\tag{4.7}

\[
E_{\text{Kin}} = \frac{1}{2} mv^2 + \frac{1}{5} mv^2
\]
\tag{4.8}

\[
E_{\text{Kin}} = \frac{7}{10} mv^2
\]
\tag{4.9}

As can be seen from the final result, the kinetic energy of a rolling ball is slightly larger than that of a point object travelling at the same speed\(^4\).

2.4 Parabolic Trajectory

The motion of a mass launched into free fall with initial velocity, \(v \), at an angle \(\varphi \) relative to the horizontal, can be treated most easily by evaluating the horizontal (or \(x \)) and vertical (or \(y \)) position in terms of the time (\(t \)) as two independent motions. This problem, in which explicit expressions for \(y(t) \) and \(x(t) \) are obtained has been treated in your text and in lecture. (We neglect air resistance while the ball is in free fall.)

3 Experiment

The figure shows the apparatus to be used in this experiment. A ball is released into a tube at the release point, rolls through the tube and emerges at the launch point. You should measure the parameters shown explicitly in the figure, and the additional parameter, \(\Delta h' \), which is used to estimate friction losses.

Remark: If you want to clean the tube beforehand, there should be a swab on a string available.

3.1 Prediction of Position

Before you do the experiment, you should derive a set of equations at home that predict the \(x \)-position where the ball hits the ground (\(y = 0 \)). This expression should depend only on the measured parameters shown in the figure: \(h_1, h_2, h_3, D, L \), as well as the value of \(\Delta h' \). You will need to substitute these quantities rather than parameters we do not directly measure, like \(v \) or \(\varphi \).

\(^4\)If you have not yet had rotations in lecture, you may not follow this argument in detail. But the last equation indeed does express the kinetic energy of the rolling ball (see HRW Section 11-3). Be sure to use it.
Rather than derive a single complicated formula for \(x \) in terms of symbols for all the preliminary measurements, it is more convenient to calculate, in sequence, several intermediate quantities and then combine them to find \(x \). Bring the sheet with your derivation of the formulae for \(x \) in terms of the measured parameters. You should prepare this before coming to the lab! It should be attached to the report when you are finished.

1. Find \(v \), the magnitude of the launching velocity, by using the conservation of total mechanical energy (incorporating the estimate of the energy lost to friction).

2. Find \(v_x \) and \(v_y \), the horizontal and vertical components of \(v \), by referring to the geometry of the final section of the track.

3. Find \(t \), the time the ball is in the air, by considering the vertical motion involving \(v_y \) and \(h_2 \) alone.

4. Finally, find \(x \).

Steps 3 and 4 may be combined by using the trajectory equation \(y(x) \), obtained by eliminating the time in the equations for \(y(t) \) and \(x(t) \).

Choose the heavy metal ball to be your first ball. Adjust the screw such that the ball, when released at the release point, just makes it to the launch point before reversing direction.

- Record \(h'_1 \) and \(h'_2 \).
Increase h_1 with the adjustment screw so that the ball will be launched. Make sure that that $h_1 - h_2$ is at least twice as big as $h'_1 - h'_2$.

- Measure all the required quantities and predict where the ball will hit the floor. Place a coin at that position. Release the ball and see if the ball hits the coin.

Repeat the experiment for the same ball with a different height h_1. (Check or measure all relevant quantities.)

- Comment on your results

Repeat the same steps for the plastic ball, then the aluminum ball.

- The difference $\Delta h' = h'_1 - h'_2$ provides a measure of the energy lost to friction as the ball traverses the tube. Order the measurements of the balls from highest friction to lowest friction. Explain why you might have expected this order.

- Which ball would you have expected to fly the furthest horizontal distance from the same release point? Why?

- What are the major sources of error? How far off would your results be if you had not corrected for the friction losses in the tube? From the comparison of your results with the predictions, how much effect might the neglected air resistance in the free-fall trajectory have contributed?

3.2 Quantitative Measurements and Uncertainty

In this part of the experiment, you will take measurements of the hit position relative to that predicted. These data will permit a measure of the spread, or uncertainty, from the reproducibility of the results. You will take measurements for two balls (heavy metal and plastic) for the same orientation of the launching tube.

Place a sheet of white paper on the floor centered at the predicted location and place a piece of carbon paper on top of it. Tape them to the floor. Before proceeding, make a guess of how large the spread of results will be!

Roll a single ball about twenty times using the same setup; you should obtain a number of points marked on the white paper. These should be spread around the expected value. Do this experiment with different papers for the heavy metal ball and for the plastic ball.

- How do you expect the spread of measurements to appear? (Qualitatively, not quantitatively!)
• Describe and compare the two spreads. (How large is the spread? Is it uniform in all directions? Should it be? Is the spread the same for both balls? Should it be? Is the spread about as big as you expected?)

• If the spread much bigger along the direction of the trajectory than perpendicular to it, how would you interpret this?

• Make a few suggestions for how you could have improved the first part of the experiment so that you would always hit a smaller area, like that of a dime!

3.3 Checking Formula

If you want to check if your derived formula for the position where the projectile hits the ground is correct, you can use the following data: The position the projectile hits the ground is then at: \(x = 30.5 \text{ cm} \).

\[
\begin{align*}
 h_1 &= 124.3 \text{ cm} & h_3 &= 110.0 \text{ cm} \\
 h'_1 &= 122.7 \text{ cm} & D &= 27.7 \text{ cm} \\
 h_2 &= 119.3 \text{ cm} & L &= 29.2 \text{ cm} \\
 h'_2 &= 120.5 \text{ cm}
\end{align*}
\]

4 Lab Preparation Examples

Trajectories:

1. What is your predicted value for \(x \), assuming you measure the following values:

\[
\begin{align*}
 h'_1 &= 105 \text{ cm} & h'_2 &= 90 \text{ cm} \\
 h_1 &= 120 \text{ cm} & h_2 &= 80 \text{ cm} & h_3 &= 65 \text{ cm} \\
 L &= 25 \text{ cm} & D &= 20 \text{ cm}
\end{align*}
\]

2. If \(h'_1 = 125 \text{ cm} \) and \(h'_2 = 100 \text{ cm} \), what percentage of the potential energy is lost to friction?

3. You shoot a bullet with velocity \(v \) and an angle \(\varphi \) to the horizontal direction and observe where it hits the ground. You now increase the angle with which a bullet is shot. Does it reach further or not? Does the answer depend on what the original angle was?

Spread:
4. Assume you cannot control the release point very well. (In the experiment we control this quite well.) Suppose you sometimes release the ball further up the tube and sometimes further down. How do you think this would affect the spread?

5. Assume you perform the lab outdoors, where there is a strong and unsteady wind blowing along the length of the launch tube. How will your spread look in this case?

Air Resistance:

6. We need to measure the friction in the tube in this experiment. But we do neglect the air resistance of the ball after it is launched. How big an effect do you estimate this to be?

7. Assume you want to make a parachute jump. You know that you can change the air resistance by giving the air a bigger or smaller cross section to resist. But you are curious about what influence your body weight has on the maximum speed you can reach:

You know that the driving force pulling you down to earth is $m \cdot g$. Furthermore you also know that the air resistance is a function that increases with increasing velocity (and area). (If you are not convinced of this, drive your car at different speeds and put your hand out of the window!) Finally you remember that the maximum speed is the speed when there is no more acceleration (i.e. the force pulling you down and the force pulling you up are equal). With all this knowledge, try to explain why a heavy body can reach a higher maximum velocity than a light one (given that they have the same shape and size). (If you want to use an equation for the air resistance you can e.g. use $F(v) = \text{const} \cdot v^2$ which is true in some limit.)

5 Comments for TA

5.1 Required Error Propagation

1. Calculate the error in your theoretical predictions for the hit point x propagating uncertainty in measuring D, L, Δh, and $\Delta h'$ only after calculating t! Do NOT calculate the uncertainty in t.

2. Quantitatively determine uncertainty in the hit point x using your measured spread for all 3 spheres.

5.2 Required Prelab Questions

1. Complete prelab questions 1, 3, 5, 7.
5.3 Additional Comments

1. Give students the moment of inertia of a sphere.

2. Have students compare the location and spread of hit point x to theoretical predictions.

3. Be careful not to use damaged spheres (dented or badly scratched).

4. Check that all spheres can be used in the track. Some spheres may be too light.
Experiment 1-5
Conservation of Momentum

1 Introduction

Momentum is one of the central quantities in physics and, like energy, is bound by a conservation law. Although conservation of momentum is less intuitive to many people than conservation of energy, conservation of momentum can be applicable in situations where conservation of energy is not. Sometimes, conservation of energy may not be easily utilized since it can be difficult to keep track of all possible energy contributions (such as energy contribution that deforms the metal of two cars as they collide), but conservation of momentum may still be helpful. For some problems, momentum conservation is essential. We will see that specific problems, like the ballistic pendulum that you will study today, require both energy and momentum conservation for their solution. Others, like collisions on the airtrack, can be solved by momentum conservation where mechanical energy is conserved (elastic) as well as where mechanical energy is not conserved (inelastic). This lab is designed to provide you with an intuitive, yet quantitative, sense of momentum and some of its important applications.

Remark: You must prepare some derivations (mainly for projectile velocity in the ballistic pendulum part) at home; otherwise you may not finish the lab on time!

2 Theory

2.1 Momentum Conservation

Momentum is a vector quantity, so it has magnitude and direction. To add or subtract momenta, use the usual rules of vector addition. In this lab, we deal only with momentum in one dimension, so the vector property is applicable only in the sense that if two objects move in opposite directions, their momenta have opposite signs. This is the source of most mistakes when performing calculations with momenta, so be careful.

Momentum is the product of mass and velocity:

\[p = m \vec{v} \] \hspace{1cm} (5.1)

A fundamental property of nature is that the total momentum components of any closed system\(^2\) are conserved in any physical process.

1 See Chapter 9 of Fundamentals of Physics by Halliday, Resnick & Walker.
2 A closed system is one in which the sum of forces external to the specified system are negligible.
2.2 The Air Track

Using the gliders on the air track, we will test momentum conservation by measuring momentum of the gliders before and after collisions. Since momentum is the product of mass and velocity, we simply need to measure the mass of the gliders using a balance, and measure the velocities using the apparatus we saw in the velocities lab. We are going to study two different kinds of collisions:

A). Elastic Collision. In the first experiment performed on the air track, two gliders with masses \(m \) and \(M \) will start with velocities \(v_1i \) and \(v_2i \). We will use the sonic ranger to measure these velocities following procedures described in section 3. After collision, the velocities become \(v_1f \) and \(v_2f \). The gliders will undergo perfectly elastic collision, so both energy and momentum are conserved, meaning that

\[
\begin{align*}
mv_1i + Mv_2i &= mv_1f + Mv_2f \quad (5.2) \\
\frac{1}{2}mv_1^2 + \frac{1}{2}Mv_2^2 &= \frac{1}{2}mv_1^2_f + \frac{1}{2}Mv_2^2_f \quad (5.3)
\end{align*}
\]

After some algebra, you should be able to solve \(v_1f \) and \(v_2f \) from the above two equations, and the result should be

\[
v_1f = \frac{2Mv_2i - (M - m)v_1i}{M + m}, \quad v_2f = \frac{2mv_1i + (M - m)v_2i}{M + m} \quad (5.4)
\]

A special case of the above equations is that, when the two masses are equal, \(M = m \), the equations can be simplified into

\[
v_1f = v_2i, \quad v_2f = v_1i \quad (5.5)
\]

or in other words, the two gliders just exchange their velocities.

B). Inelastic Collision. In the second experiment the two gliders will stick together after collision. This is called perfectly inelastic collision meaning that the kinetic energy in the center-of-mass frame is reduced to zero. Momentum is still conserved in this case, and because the two gliders stick together after collision, there is only one unknown final velocity. The momentum conservation equation reads

\[
mv_1i + Mv_2i = (m + M)v_f \quad (5.6)
\]

where \(v_f \) is the common final velocity of the two gliders.

2.3 The Ballistic Pendulum

A ballistic pendulum is an instrument usually used to indirectly measure the velocity of a projectile. A fast metal ball strikes a stationary pendulum (in our case a small cup...
with a latch on the top) and sticks to it. The initial velocity of the ball can be deduced by observing how far the pendulum swings after the collision. In this experiment, we will measure angular displacement of the pendulum, and use that value to estimate the metal ball’s initial velocity. We can then compare the measurement with the pre-measured velocity data.

To analyze this problem, it is easiest to start by splitting it into two parts. In the first part, consider the metal ball and pendulum in the time right before and right after the collision. The pendulum is initially at rest at its equilibrium point, whereas the metal ball travels with an initial velocity and therefore nonzero kinetic energy. When the ball strikes the pendulum, they stick together and move at the same velocity. But because an unknown part of the initial kinetic energy is lost via vibrations, we cannot directly calculate the pendulum’s subsequent motion from conservation of mechanical energy. Instead, we can use conservation of momentum, since during the small time of the collision there are no external forces acting in the direction of motion.

Quantitatively, consider the ball to have a mass \(m \) and initial velocity \(v \), and the pendulum to have a mass \(M \) (concentrated completely at the pendulum’s end) and initial velocity of 0. The total initial momentum is \(mv \). When the projectile and the pendulum stick together, they have total mass \(m + M \) and we define their combined velocity to be \(V \). The relationship from conservation of momentum is:

\[
mv = (m + M)V
\]

So if we know the initial velocity of the projectile \(v \), we can calculate the combined velocity of the projectile and pendulum \(V \).

![Schematic Diagram for the Ballistic Pendulum](image-url)
For the second part of the problem, consider the motion of the pendulum after the collision. At this point we cannot use conservation of momentum because an external force (gravity) acts on the pendulum more and more in the direction of the pendulum’s motion. However, we can use energy conservation, because there are no uncontrollable energy losses (like vibrations or friction). Conservation of energy requires:

\[
\text{Kinetic Energy after the Collision} = \text{Potential Energy at the Top of the Swing} \quad (5.8)
\]

or

\[
\frac{1}{2}(m + M)V^2 = (m + M)gh \quad (5.9)
\]

Here, \(h\) is the height of the combined (pendulum bob + metal ball) above their lowest point. This relation permits us to calculate the maximum height \(h\) that the pendulum reaches from the combined velocity \(V\), which was calculated from the initial velocity of the projectile in the first part.

Due to the design of our pendulum, we have one final step. We will not be measuring the height \(h\) which the cup in the pendulum rises to, but rather the angle \(\theta\) through which it sweeps. By examining figure 1, it is clear that \(h\) can be represented as a function of \(\theta\) in the following way:

\[
h = R(1 - \cos \theta) \quad (5.10)
\]

We now have everything we need to solve for the initial velocity \(v\) of the metal ball in terms of the angle \(\theta\) swept through by the pendulum.

NOTE: Before coming to lab, make sure you have solved for \(v\) as a function of \(\theta\)!

3 Experiments

3.1 The Air Track

3.1.1 Set-up

The air track should be set up according to Figure 2 with a sonic ranger at either side of the air track, both connected to the data-collecting computer. Remember the sonic rangers should be set to “cart” mode for better accuracy by moving the switch at the top to the cart icon. Prior to taking any data, you should use the leveling feet to level the air track so that a glider placed on it would drift as little as possible. Note that a small amount of drifting might be inevitable because there might be some bowing or sagging of the track due to its weight.

Please handle the gliders with care! Don’t put them on the track without air flowing and store them only on the felt covered holders provided. Make sure that the
bumpers are inserted on both ends of the gliders, and don’t make violent collisions! (this also compromises your data).

![Diagram of Air Track Setup](image1)

Figure 2: Schematic Diagram of the Air Track Setup

In this experiment we use the computer in the lab to collect data. To log on, use the user name **student** and password **student**. On the desktop screen, click on the MOMENTUMLAB icon to load the software we use for this part of the lab.

To begin taking data, single click on the **Start** button. As the data is being collected, the graph will dynamically display the current velocities of the two gliders. To stop taking data, single click on the **Stop** button. After analyzing the data, you may want to reset the graph by clicking on the menu **Experiment → Delete Last Data Run**.

3.1.2 Elastic Collision of Two Gliders

In the air track experiment, we observe both elastic and inelastic collisions. The air track provides a steady airflow so that the gliders move along a layer of air and the effects of friction are negligible. We use bumpers and elastic rubber bands on the gliders to provide almost perfectly elastic collisions.

![Diagram of Bumpers and Bumpers](image2)

Figure 3: Rubber Band Bumpers and Bumper Plates

Insert an elastic rubber band bumper to the end of one glider (Figure 3), and insert a bumper plate to the end of the other glider. Measure the masses of the gliders with
3. Experiments

Experiment 1-5

These accessories on, without any additional mass first. Put the two gliders onto the air track and make sure that the bumper plate is facing the rubber band bumper, and the two flags are facing the sonic rangers respectively, as shown in Figure 2. Click Start button to start collecting data and send the two gliders moving toward each other with an arbitrary velocity. Record the velocities of the gliders right before collision, and right after collision.

- Calculate the final velocities of the gliders from the v_{1i} and v_{2i} you measured from experiment. Which formula do you use? Does the result agree with the final velocities you recorded using the sonic ranger?

Now we would like to study some special situations qualitatively (without calculations). Carry out the above procedure again but now keep one of the gliders stationary in the beginning, and send the other glider to collide with this one. Record the velocities of the gliders right before the collision, and right after collision.

- What do you observe? Do you have a simple explanation why this happens? Did you anticipate this result?

Now add 2 additional weights to one of the gliders, one on each side (Always put the same number of additional weights on both sides of the rider, so that it is balanced and won’t scratch the air track). Put this heavier glider on the air track and keep it stationary. Send the other glider moving toward the heavier one with an arbitrary velocity. Record the velocities of the gliders right before collision, and right after collision.

- Describe qualitatively the result of collision, i.e. which directions do the gliders go, how fast they are. Does it agree with your expectation?

- What will happen if the heavier glider is extremely massive, say with mass 100 times larger than the lighter one?

Now repeat the above procedure but now with the lighter glider initially at rest, and send the heavier glider to collide with it. Record the relevant velocities.

- Describe qualitatively the result of collision. Does it agree with your expectation?

- Again, what will happen if the heavier glider is far more massive than the lighter one?

3.1.3 Inelastic Collision of Two Gliders

Replace the rubber band bumper and the bumper plate with a wax tube and a needle from the accessory box. The needle will stick into the wax tube and the two gliders will stick together after collision. Repeat the same step as section 3.1.2 by sending the
a glider moving toward another stationary glider. Record the velocities of the gliders right before collision, and right after collision.

- Calculate the combined velocity of the two gliders after collision from the v_{1i} and v_{2i} you measured from experiment. Does it agree with the velocity you recorded using the sonic ranger?

- Repeat the experiment with both gliders moving towards each other. Try a few times to find initial velocities such that both gliders come to rest after collision. What is the ratio of their velocities? Is it what you expect?

3.2 The Ballistic Pendulum

Safety remark: Do not have the projectile launcher loaded while you are taking measurements or setting up. Remember to wear the safety goggles when you are actually doing the experiment.

In this experiment, we will measure the velocity of a projectile from a spring-loaded launcher and use it to predict the behavior of a pendulum with which it is colliding. The components are shown in the following diagram:

- **Launcher** - We will be using a spring-loaded launcher to propel our projectile. There are 3 different velocity settings, i.e. three different positions to which you can compress the spring. We assume that for a single spring position, the projectile will show very little variability in its velocity between launchings (you can convince yourself of this in the next section!).

- **Pendulum** - The pendulum consists of a rigid rod with a cup (and some brass weights) at one end. The cup has a latch which will trap the ball inside upon impact. The rod has a non-negligible mass, but we will assume that our pendulum is a simple pendulum, with all weight concentrated at the end.

3.2.1 Measuring θ

First, make sure that that the launcher is attached to the bottom set of slots, as shown in the above diagram. The plumb bob at the end of the launcher indicates the angle of inclination of the launcher. Arrange the launcher so that it lays level, and then load the metal ball into the launcher, compressing the spring to its *maximum* extent. Note that during the loading, the pendulum can be clipped to the 90 degrees position so that it stays out of the way.

Once the metal ball is loaded, bring the pendulum down. The black angle indicator should be in position so that it is pushed upward as the pendulum swings forward. It is designed to stick to the position to which the pendulum pushes it, without slipping
backward due to gravity. If you find that the indicator does slip backward, a rubber band can be used to hold it in place.

Because the base plate may not rest on a perfectly level surface, the angle indicator at the top of the pendulum may not point to zero even when the pendulum is pointing straight down. Therefore you should first record the initial (small) angle of the pendulum, and then record the final angle of the pendulum, subtracting the two to find the total angle swung through by the pendulum.

You are ready to launch. With the pendulum in position, and the whole setup pointed toward a safe place (away from your fellow physicists!), pull the yellow cord, which releases the catch on the launcher and launches your metal ball. Record the resulting angle of the pendulum, and repeat this procedure three or four times to
ensure that your result is consistent.

3.2.2 Other Measurements

In order to calculate the initial velocity, we must also know the masses of the ball and the pendulum, as well as the pendulum’s length. In order to measure these quantities, you can unscrew the pendulum and take it off from the base. Measure all of these using the electric scale and your ruler, and use them (along with the angle swept out by the pendulum) to make an estimation of the metal ball’s initial velocity.

- Once you have calculated what you expect the ball’s initial velocity to have been, compare it to what is labelled on the pendulum. Is your prediction higher or lower than the labelled value? What factors may have caused this?

- Repeat the experiment with a different compression for the spring, i.e. different initial velocity. Which of your result agrees better with the labelled value?

- In making our prediction, we assumed a simple pendulum (i.e. one with all mass concentrated at the end). Were you to make a more careful calculation, what steps in our derivation would require modification?

4 Lab Preparation Examples

Propagation of Uncertainty:

1. Given $a = 1.5 \pm 0.5$ m and $b = 3.0 \pm 0.6$ m what is a/b?

Ballistic Pendulum:

2. You measure the following values for the pendulum experiment:

<table>
<thead>
<tr>
<th>θ</th>
<th>R</th>
<th>m</th>
<th>M</th>
</tr>
</thead>
<tbody>
<tr>
<td>25$^\circ$</td>
<td>30 cm</td>
<td>30 g</td>
<td>300 g</td>
</tr>
</tbody>
</table>

What is your predicted value for v_0? (Answer: 8.16 m/s)

Conversion m/s, km/h and miles/h:

4. What is 1 m/s in km/h?

5. How many miles/h is the speed of 200 km/s?

Air track:

6. In the elastic collision, the gliders weigh $m = 100$ g and $M = 250$ g. The heavier glider is stationary, whereas the lighter one initially travels towards it with velocity
$v_{1i} = 1.5 \text{ m/s}$. What is the expected value for v_{1f} and v_{2f}? (Answer: -0.64 m/s and 0.86 m/s respectively)

7. In the inelastic collision, the gliders weigh $m = 100 \text{ g}$ and $M = 250 \text{ g}$. The heavier glider is stationary, whereas the lighter one initially travels towards it with velocity $v_{1i} = 1.5 \text{ m/s}$. What is the expected value for v_{1f} and v_{2f}? (Answer: 0.43 m/s for both)

Explanations:

8. You are sitting in a car of mass M. Another car with mass $m = 500 \text{ kg}$ crashes into you with a relative velocity of 10 m/s. Explain in a few sentences (and maybe equations) why you feel less impact if your car has $M = 2000 \text{ kg}$ as if your car has only $M = 500 \text{ kg}$?

5 Comments for TA

5.1 Required Error Propagation

1. Calculate the error in initial ball velocity for the pendulum experiment propa- gating uncertainty in θ and any measured lengths. Make sure to use uncertainty in θ as measured in radians. Note, to find uncertainty in the initial velocity. You will need to find the error in $\sin(\theta)$. To do this, we follow the more rigorous error analysis method.

$$
\sigma_{in f(x) \text{ due to } x} = \frac{df(x)}{dx} \sigma_x \tag{5.11}
$$

5.2 Required Prelab Questions

1. Complete prelab questions 1, 4, 7, 8.

5.3 Additional Comments

1. For the cart portion of the lab, have your students predict the various velocity values and compare them to the experimental results.

2. Make sure students restore initial software settings on computer before the end of lab (specifically, make sure the software automatically plots the ranger data).
1 Introduction

The purpose of this experiment is to find the rotational inertia of a point mass, a disk, and a ring. Computer data acquisition will be used to facilitate detailed analysis.

2 Theory

2.1 Rotational Inertia

Rotational inertia I is defined via Newton’s Second Law as it applies to rotating bodies,

$$\tau = I \alpha$$

(6.1)

where τ is the net torque operating on a rotating body, giving it angular acceleration α. Thus I is the constant of proportionality between the torque and the angular acceleration. In general, the rotational inertia depends not only on the mass of the rotating body, but also on how that mass is distributed about the axis of rotation. The theoretical rotational inertias of the relevant shapes for this experiment are given in Table 1.

To find the rotational inertia experimentally, a known torque is applied to the object and the resulting angular acceleration is measured. Figure 1 offers a diagram of the Complete Rotational System that will be used in this experiment. It consists of a cast iron base that connects to a rotating platform, where we will attach objects such as a disk or ring in order to measure their rotational inertia. A lever arm with a photogate head can be set up such that a hanging mass (descending under the influence of gravity) exerts a torque on the rotating platform. Figures 3 and 7 also provide insight into the relevant parts of the Complete Rotational System, and how it will be used in Section 3.

Since $\tau = I \alpha$,

$$I = \frac{\tau}{\alpha}$$

(6.2)

where α is the angular acceleration which is equal to a/r and τ is the torque caused by the weight hanging from the thread which is wrapped around the step pulley below the rotating platform. From Newtonian mechanics we remember $\vec{\tau} = \vec{r} \times \vec{F}$ (or $\tau = rF$ if r and F are perpendicular), so we find
<table>
<thead>
<tr>
<th>Shape</th>
<th>Orientation of the Axis</th>
<th>Rotational Inertia</th>
<th>Diagram</th>
</tr>
</thead>
<tbody>
<tr>
<td>Point Mass</td>
<td>R from point mass</td>
<td>$I = MR^2$</td>
<td></td>
</tr>
<tr>
<td>Uniform disk with radius R</td>
<td>Through center of disk, perpendicular to the plane of the disk</td>
<td>$I = \frac{1}{2}MR^2$</td>
<td></td>
</tr>
<tr>
<td>Uniform disk with radius R</td>
<td>Along diameter of disk</td>
<td>$I = \frac{1}{4}MR^2$</td>
<td></td>
</tr>
<tr>
<td>Uniform ring with inner radius R_1 and outer radius R_2</td>
<td>Through center of ring, perpendicular to plane of the ring</td>
<td>$I = \frac{1}{2}M(R_1^2 + R_2^2)$</td>
<td></td>
</tr>
</tbody>
</table>

Table 6.1: The rotational inertia along with diagrams for various common objects in rotational kinematics.

$$\tau = rT$$ \hspace{1cm} (6.3)

where r is the radius of the step pulley about which the thread is wound and T is the tension in the thread when the apparatus is rotating.

Applying Newton’s Second Law for the hanging mass m gives

$$\sum F = mg - T = ma$$ \hspace{1cm} (6.4)

where $g = 9.8 \text{ m/s}^2 = 980 \text{ cm/s}^2$ is the gravitational acceleration an objects feels while on the surface of the Earth. In this lab we recommend using grams instead of kilograms, and centimeters instead of meters. This will simplify the algebra slightly.

![Diagram](image)

Figure 1: A setup used to determine the rotational inertia in this experiment.

Solving for the tension in the thread gives

$$T = m(g - a) = m(g - \alpha r).$$ \hspace{1cm} (6.5)
If we assume a frictionless system, the net torque would be
\[\sum \tau = mgr - m\alpha r^2 = I\alpha. \] (6.6)

Once the angular acceleration of the rotating platform is determined the torque can be obtained for the calculation of the rotational inertia.

3 Procedure

![Diagram of the necessary parts to level the apparatus.](image)

3.1 Level the apparatus

The accuracy of this experiment requires the apparatus to be extremely level. To level the base, perform the following steps:

1. Adjust the position of the 300 g square mass so that its center is at the 22 cm mark by loosening the screw, sliding the mass along the track, and tightening the screw so the mass will not slide. Rotate the track until the 300g mass is above the left foot of the “A” base, on the same side as the pulley. See the left side of Figure 2.

2. Adjust the leveling screw on the side opposite the pulley until the end of the track with the square mass is aligned over the leveling screw on the other leg of the base. See the left side of Figure 2.
3. Rotate the track 90 degrees so it is parallel to one side of the “A” and adjust the other leveling screw until the track will stay in this position. See the right side of Figure 2.

4. The track should now be level and it should remain at rest regardless of its orientation.

3.2 Rotational inertia of a point mass

1. With the 300 g square mass still centered on the 22 cm mark, attach a thread to the middle spindle of the step pulley and hang the thread over the 10-spoke pulley. Allow the string to reach the floor. Use a caliper to measure the radius of the middle spindle, \(r \).

2. Start the “Torque and Rotational Inertia” DataStudio program.

3. Attach a 10 g mass to the thread and wind the middle spindle until the mass is hanging right below the pulley.

4. Allow the rotating platform to rotate freely and start acquiring data by clicking the “Start” button in DataStudio as shown in Figure 4. Stop data acquisition before the mass hits the floor by clicking the same button.

5. Highlight a linear portion of the angular velocity graph as shown in Figure 5 and perform a linear fit by clicking the ”Fit” drop down menu and selecting ”Linear Fit” as shown in Figure 6.

6. Record the slope of the angular velocity graph, which is the average angular acceleration \(\alpha_{\text{avg}} \), in Table 6.2 and compute the experimental rotational inertia,
\[I_{\text{exp}} = \left(\frac{mgr}{\alpha} \right) - mr^2. \]

Figure 3: The setup for Section 3.2
7. Repeat steps 3 through 6 with 50 g, and 90 g suspended masses and fill in Table 6.2.

8. Loosen the 300 g mass and slide it along the track until it is centered at the 11 cm mark. Repeat steps 3 through 6 using 10 g, 50 g, and 90 g suspended masses and fill in Table 6.3.

9. Loosen the 300 g mass and remove it from the track. Repeat steps 3 through 6 using 10 g, 50 g, and 90 g suspended masses and fill in Table 6.4.

10. Note any sources of error you believe may have contributed to or affected your results in this section. Which were more influential than others? How could you improve upon this to minimize their effects in the future?

<table>
<thead>
<tr>
<th>Suspended Mass</th>
<th>α_{avg} (rad/s²)</th>
<th>I_{exp} (g·cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50g</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90g</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 6.2: The first of three tables used in determining I_{exp} of a point mass.
3.3 Rotational inertia of a disk

1. Remove the straight track from the “A” base by loosening the screw under the track and lifting it from the center shaft. Put the straight track aside. Position
1. Attach the rotational disk directly on the center shaft as shown in Figure 7. The side of the disk that has the indentation for the ring should be up.

2. Attach a 10 g mass to the thread and wind the middle spindle until the mass is hanging right below the pulley.

3. Allow the rotating platform to rotate freely and start acquiring data. Stop data acquisition before the mass hits the floor.

4. Highlight a linear portion of the angular velocity graph and perform a linear fit.

<table>
<thead>
<tr>
<th>Rotational Disk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspended Mass</td>
</tr>
<tr>
<td>10g</td>
</tr>
<tr>
<td>50g</td>
</tr>
<tr>
<td>90g</td>
</tr>
</tbody>
</table>

Table 6.5: The first of two tables used in determining I_{exp} of a rotational disk.
3. Procedure

<table>
<thead>
<tr>
<th>Rotational Disk on Edge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Suspended Mass</td>
</tr>
<tr>
<td>10g</td>
</tr>
<tr>
<td>50g</td>
</tr>
<tr>
<td>90g</td>
</tr>
</tbody>
</table>

Table 6.6: The second of two tables used in determining I_{exp} of a rotational disk.

5. Record the slope of the angular velocity graph (the average angular acceleration α_{avg}), in Table 6.5 and compute the experimental rotational inertia, $I_{\text{exp}} = \frac{mgr}{\alpha} - mr^2$.

6. Repeat steps 2 through 5 with 50 g and 90 g suspended masses.

7. Remove the disk from the center shaft and rotate it up on its side. Mount the disk vertically by inserting the shaft in one of the two “D”-shaped holes on the edge of the disk. See Figure 8. Fill in Table 6.6.

8. Measure the mass and radii of the disk and the ring to compute their theoretical rotational inertias. Do they conform with the experimental data?

9. Note any sources of error you believe may have contributed to or affected your results in this section. Which were more influential than others? How could you improve upon this to minimize their effects in the future? How does the uncertainty in this section compare to that in 3.2?

Figure 8: The setup for Section 3.3 steps 7 and 8.
4 Comments for TA

4.1 Required Error Propagation

1. Calculate error in experimentally measured moment of inertia by propagating uncertainty in α and radius r. Uncertainty in α can be determined from the "Linear Fit" process in the DataStudio program. Calculate error only once per moment of inertia (you should have 5 calculations in total: track with point mass at 22cm mark, track with point mass at 11cm mark, track without point mass, disk laying flat, disk on its side).

4.2 Additional Comments

1. Ask your students to weigh the masses used in the experiment. They may be different from the masses quoted in the lab manual.

2. If your students are short on time, have them perform only one moment of inertia calculation for each scenario.
Experiment 1-7
Centripetal Force and Angular Momentum Conservation

1 Introduction

The purpose of this experiment is two-fold: to examine centripetal force by studying the effects of varying the mass of the object, the radius of the circle, and the centripetal force on an object rotating in a circular path; and to examine angular momentum conservation by observing the effect of changing the rotational inertia of the system without exerting torque on the system.

2 Theory

2.1 Centripetal Force

When an object of mass m, attached to a string of length r, is rotated in a horizontal circle, the centripetal force on the mass is given by:

$$F = \frac{mv^2}{r} = mr\omega^2$$

(7.1)

where v and ω are the tangential and angular velocities, respectively ($v = r\omega$).

2.2 Angular Momentum Conservation

During the angular momentum portion of the experiment the ring will be dropped onto the rotating disk. There is no net torque on the system since the torque on the ring is equal and opposite to the torque on the disk. Therefore, there is no change in angular momentum. Angular momentum is conserved

$$L = I_i\omega_i = I_f\omega_f$$

(7.2)

where I_i is the initial rotational inertia and ω_i is the initial angular speed, while I_f is the final rotational inertia and ω_f is the final angular speed. The initial rotational inertia is that of a disk

$$I_i = \frac{1}{2}M_1R^2$$

(7.3)

where M_1 is the mass of the disk and R is its radius. The final rotational inertia I_f is the combination of a disk and a ring
\[I_f = \frac{1}{2} M_1 R^2 + \frac{1}{2} M_2 (r_1^2 + r_2^2) \] \hspace{1cm} (7.4)

where \(M_2 \) is the mass of the ring and \(r_1 \) and \(r_2 \) are the inner and outer radii of the ring, respectively.

3 Procedure

![Diagram of necessary parts to level the apparatus.]

Figure 1: Diagram of the necessary parts to level the apparatus.

![Digits display in DataStudio.]

Figure 2: The digits display in DataStudio.

3.1 Level the apparatus.

The accuracy of this experiment requires the apparatus to be extremely level. To level the base, perform the following steps:
1. Set up the apparatus with the mass hanging from the sidepost, the clamp-on pulley attached to the end near the side post, and the spring at the center post (but no mass hanging on the pulley), level the apparatus as was done in the previous Rotational Inertia Experiment:

2. Rotate the track until the clamp-on pulley end of the track is above the left foot of the “A” base. See the left side of Figure 1 (where the “square mass” in this case is the clamp-on pulley end).

3. Adjust the leveling screw on the side opposite the pulley until the end of the track with the clamp-on pulley is aligned over the leveling screw on the other leg of the base. See the left side of Figure 1.

4. Rotate the track 90 degrees so it is parallel to the right side of the “A” and adjust the opposite leveling screw until the track is stable in the parallel position. See the right side of Figure 1.

5. The track should now be level and it should remain at rest regardless of its orientation.

3.2 Centripetal Force

3.2.1 Vary Radius (constant force and mass)

The centripetal force and the mass of the hanging object will be held constant for this part of the experiment. The purpose of steps 1-9 are to calibrate the system to a constant, measurable centripetal force. Steps 10-23 are measuring the relation between the radius of the side post and the angular velocity of the side post using the centripetal force set by steps 1-9.

1. Weigh the mass hanging from the side post and record its mass M in Table 7.2.

2. Reattach the hanging mass and connect the string from this mass to the spring hanging from the center post through the center pulley. The string must pass under the pulley on the center post. See Figure 3.

3. Move the center post so that it is at the center of the track (0 cm). This can be done by loosening the knob, moving the post and retightening.

4. Attach a string to the hanging object and hang a known mass over the clamp-on pulley. Record this mass m in Table 7.2. This establishes the constant centripetal force.
5. Adjust the position of the side post to be approximately three-quarters of the way between the center post and the clamp-on pulley by pressing down on the side post to assure that it is vertical, then tightening the thumb screw on the side post to secure its position.

6. The distance between the center post and the side post (measured using the scale on the track) determines the initial radius r. Record this radius r in the first row of Table 7.1.

7. The object on the side post must hang vertically. Adjust the spring bracket vertically, by loosening the knob at the top of the center post and moving it up or down to vary the stretching of the spring, until the string from which the object hangs on the side post is aligned with the vertical line on the side post.

8. Align the ring indicator bracket on the center post so that it is centered around the orange indicator on the spring.

9. Remove the mass that is hanging from the clamp-on pulley.

10. Start the “Centripetal Force” DataStudio program.

11. Rotate the apparatus gently by hand (attempting not to jostle the mass hanging from the side post), increasing the rotation speed until the orange indicator on the spring is again centered with the ring indicator bracket on the center post. This indicates that the centripetal force acting on the mass hanging from the side post is now equivalent to the force that was previously imparted by the mass hanging from the clamp-on pulley.

12. Record this angular speed (when the orange indicator is centered in the ring indicator) from the software (see Figure 2).

13. Record the angular speed and the radius of the side post in the first row of Table 7.1.

14. Move the side post to a new radius and repeat steps 1-13. Do this for a total of five radii.

15. Calculate the inverse of the square of the angular velocity ω for each trial and record these values in Table 7.1.

16. The weight of the mass hanging from the clamp-on pulley is equal to the centripetal force applied by the spring. Calculate this force by multiplying the mass hung from the clamp-on pulley by $g = 9.8 \text{ m/s}^2$ and record this force mg in Table 7.2.
17. Plot the radius r on the vertical axis versus the inverse square of the angular velocity on the horizontal axis for all five data points. This should give a straight line since:

$$ r = \frac{F}{M \omega^2} $$ \hspace{1cm} (7.5)

18. Draw the best-fit line through the data points and measure the slope of the line (which equals F/M). Make sure to plot uncertainty bars for radius and inverse angular frequency squared.

19. Calculate the uncertainty in your measured slope using the best-fit lines method. Record the slope with error in Table 7.2.

20. Calculate the centripetal force F with error from this slope using Equation 7.5 and record the result in Table 7.2.

21. Calculate a percent difference between the centripetal force determined from mg and from the slope F. Record this percent difference in Table 7.2.

22. Is the force found from the slope within uncertainty of the force determined by the mass hanging from the clamp-on pulley when the system was not in rotation?

23. What are the main sources of error? Which source of error do you think dominates in this experiment?

Figure 3: The centripetal force apparatus.
3. Procedure

<table>
<thead>
<tr>
<th>r (cm)</th>
<th>ω (rad/s)</th>
<th>$\frac{1}{\omega^2}$ (s²/rad²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7.1: Angular velocities ω for various radii r.

<table>
<thead>
<tr>
<th>Mass hanging from side post = M</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mass hanging from clamp-on pulley = m</td>
<td>Centripetal force = mg</td>
</tr>
<tr>
<td></td>
<td>Slope from graph = F/M</td>
</tr>
<tr>
<td></td>
<td>Centripetal force from slope = F</td>
</tr>
<tr>
<td></td>
<td>Percent difference between mg and F</td>
</tr>
</tbody>
</table>

Table 7.2: Results for Section 3.2.1

3.2.2 Vary Force (constant radius and mass)

The radius of rotation and the mass of the hanging object will be held constant for this part of the experiment. Instead of changing the position (radius) of the side post, you will be hanging five different masses from the clamp-on pulley and finding the five different rotational velocities at which the centripetal force is matched. (Many of the instructions below are identical to those performed above, and in some cases you will be able to simply copy the relevant values into this part.)

1. Weigh the mass hanging from the side post and record its mass M in Table 7.2.

2. Reattach the hanging mass and connect the string from this mass to the spring hanging from the center post through the center pulley. The string must pass under the pulley on the center post. See Figure 3.

3. Move the center post so that it is at the center of the track (0 cm). This can be done by loosening the knob, moving the post and retightening.

4. Attach a string to the hanging object and hang a known mass over the clamp-on pulley. Record this mass m in Table 7.3. This establishes the constant centripetal force.

5. Adjust the position of the side post to be approximately three-quarters of the way between the center post and the clamp-on pulley by pressing down on the
side post to assure that it is vertical, then tightening the thumb screw on the side post to secure its position.

6. The distance between the center post and the side post (measured using the scale on the track) determines the initial radius r. Record this radius r in the first row of Table 7.1.

7. The object on the side post must hang vertically. Adjust the spring bracket vertically, by loosening the knob at the top of the center post and moving it up or down to vary the stretching of the spring, until the string from which the object hangs on the side post is aligned with the vertical line on the side post.

8. Align the ring indicator bracket on the center post so that it is centered around the orange indicator on the spring.

9. Remove the mass that is hanging from the clamp-on pulley.

10. Start the “Centripetal Force” DataStudio program.

11. Rotate the apparatus gently by hand (attempting not to jostle the mass hanging from the side post), increasing the rotation speed until the orange indicator on the spring is again centered with the ring indicator bracket on the center post. This indicates that the centripetal force acting on the mass hanging from the side post is now equivalent to the force that was previously imparted by the mass hanging from the clamp-on pulley.

12. Record this angular speed (when the orange indicator is centered in the ring indicator) from the software (see Figure 2).

13. Record the angular speed and the radius of the side post in the first row of Table 7.3.

14. Keep the radius constant and repeat steps 4-13, using a different mass hanging over the pulley in each trial. Do this for a total of five different masses (centripetal forces).

15. The weight of the mass hanging from the clamp-on pulley is equal to the centripetal force applied by the spring. Calculate this force by multiplying the mass hung from the clamp-on pulley by $g = 9.8 \text{ m/s}^2$ and record this force mg in Table 7.3 for each of the five masses.

16. Calculate the radius times the square of the angular velocity $r\omega^2$ for each trial and record this in Table 7.3.
3. Procedure

Experiment 1-7

<table>
<thead>
<tr>
<th>m (kg)</th>
<th>mg (kg.m/s²)</th>
<th>ω (rad/s)</th>
<th>$r\omega^2$ (m.rad²/s²)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7.3: Data for varying the centripetal force.

<table>
<thead>
<tr>
<th>Mass of object M (from scale)</th>
<th>Mass of object M (from slope)</th>
<th>Percent difference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7.4: Results for Section 3.2.2.

17. Plot the centripetal force mg on the vertical axis versus the radius times the square of angular velocity $r\omega^2$ on the horizontal axis. This should give a straight line since:

$$ F = Mr\omega^2 $$ (7.6)

18. Draw the best-fit line through the data points and measure the slope of the line (M). Make sure to plot uncertainty bars for mg and $r\omega^2$.

19. Calculate the uncertainty in your measured slope using the best-fit lines method and record the slope with error in Table 7.4.

20. Calculate the percent difference between the measured value for M and the value calculated from your measured slope. Record this percent difference in Table 7.4.

21. Does the mass found from your slope equal the mass measured directly within error?

22. What are the main sources of error? Which source of error do you think dominates in this experiment?

3.3 Conservation of Angular Momentum

1. Remove the track used in the previous experiment and position the rotational disk directly on the center shaft as shown in Figure 4. The side of the disk that has the indentation for the ring should be up.
2. Spin the disk with your hand.

3. Start recording data using the "Centripetal Force" DataStudio program. After approximately 25 data points have been taken, carefully drop the mass ring onto the spinning disk so that it rests on the indentation. Stop recording data a few seconds after the mass ring is dropped on the disk.

4. Use the velocity graph to determine the angular speed right before the collision (ω_i) and right after the collision (ω_f).

5. Repeat for 3 trials and enter data into Table 7.5.

6. Calculate the initial and final moments of inertia I, using the appropriate expressions for I for the disk and the ring. You may need to measure their masses and radii.

7. Calculate initial and final angular momenta L, by multiplying moments of inertia I by the relevant initial and final angular velocities. Enter these values into Table 7.5.

8. Calculate the ratio of the initial angular momentum to the final angular momentum ($R = L_i/L_f$) for all three trials. Calculate the uncertainty in R by propagating uncertainties in angular momentum, mass, and radius.

9. Is angular momentum conserved within error? What value of R should we get if angular momentum is conserved?

10. Why might angular momentum not be conserved?

11. What are the main sources of error? Which source of error do you think dominates in this experiment?

<table>
<thead>
<tr>
<th>ω_i (rad/s)</th>
<th>ω_f (rad/s)</th>
<th>L_i (kg.m2/s)</th>
<th>L_f (kg.m2/s)</th>
<th>R</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 7.5: Angular velocities and angular momenta before and after collision.
4 Comments for TA

4.1 Required Error Propagation

1. Calculate error in the measured centripetal force propagating uncertainty in F/M found from the max-min slope method for linear fit error and error in mass M.

2. Calculate error in the measured mass of the hanging mass M propagating uncertainty found from the max-min slope method for linear fit error.

3. Calculate error in the ratio of final angular momentum to initial angular momentum $R = L_i/L_f$ propagating uncertainties radius r.

4.2 Additional Comments

1. Make sure students thread the string connected the central spring to the hanging mass under the pulley at the bottom of the central post.

2. Make sure students’ strings have knots to allow for the attachment of the hanging calibration mass.

3. Make sure students remove the mass hanging from the side pulley before measuring angular velocity.
Experiment 1-8
Waves I: Standing Waves

1 Introduction

Waves surround us. Your radio receives signals by means of electromagnetic waves and emits waves that sound like music when they hit your ear. Waves are visible on the surface of a body of water. The human body creates waves (like heartbeats) and diagnostics of the body’s physical condition involve many different kinds of wave phenomena. The natural world is full of waves, and technology has multiplied their importance to us.

All waves share certain physical similarities. In this experiment, we gain experience with properties shared by many different kinds of waves.

2 Theory

2.1 Waves

Waves are periodic disturbances propagating in space and time. In this lab, we will illustrate properties of waves using waves in a stretched string and sound in an air column.

To be able to deal with waves we introduce a number of definitions:

- The period T is the time it takes for a wave to repeat itself.

- The frequency f, defined as $f = 1/T$, measures the number of complete cycles the wave repeats in one second. The unit of frequency (1/seconds) is Hertz (Hz).

- The wavelength λ is the spatial separation between repeating points in a wave.

- The amplitude A of the wave is the maximum magnitude of the displacement.

If a long, taut horizontal string is sharply pulled up at some point and released, this part of the string will vibrate up and down. Neighboring points will then follow the motion, and the original disturbance will propagate down the string as a traveling wave. Since the individual particles vibrate in a direction perpendicular to the direction of propagation, this wave is called a transverse wave. If the disturbance is periodic, i.e.,

1 A general discussion of waves is treated in Chapter 16 of Fundamentals of Physics by Halliday, Resnick & Walker. See Section 16-13 for standing waves. Electromagnetic Waves are covered in lecture next semester. This experiment should familiarize you with the phenomenology of waves.
repeated continuously, a wave train will move down the string. The following figure shows the disturbance along the string at a single instant of time, in this case for a sinusoidal wave. If the wave is moving to the right and a second picture is taken a quarter period, $T/4$, later, all points on the wave will have moved an equal distance to the right, as shown by the dotted curve. The frequency, f, of the wave is defined as the number of times per second the disturbance is repeated (thus $f = 1/T$). Note that the period of the motion is determined by the cause of the initializing disturbance. During each period T, the wave travels a distance of one wavelength, λ; therefore the velocity of the wave is given by $c = f\lambda$.

![Figure 1: Propagation of a Transverse Wave](image1)

The figure below shows the vertical displacement of the string versus time at a fixed location along the string. The time interval between successive identical displacements of a given point is the period T of the wave. Remember that the wavelength of a traveling wave can only be determined when one observes the displacement as a function of distance at one instant in time. The period, on the other hand, is obtained when one observes the displacement of one point as a function of time at one location.

![Figure 2: Vertical Displacement of a String](image2)

\[2^{\text{In all the cases here, } c \text{ will be a constant. But in general } c \text{ could be a function of the frequency. (This effect is called dispersion).}}\]
There are, in general, two types of waves: transverse and longitudinal. If the oscillation is perpendicular to the direction of propagation of the wave, then the wave is transverse. If a wave changes along the direction of propagation, it is called a longitudinal wave.

An example of a longitudinal wave is a sound wave, in which there are periodically changing regions of low and high air pressure along the direction of wave propagation. A sound wave is normally initiated by a vibrating solid (such as a tuning fork), which alternately compresses and rarefies the air adjacent to it. The wave thus consists of pressure variations in the air that are moving away from the fork. Since these variations oscillate along the direction of wave propagation, the sound wave is a longitudinal traveling wave.

The definitions of f, λ, and T, explained above for transverse waves, hold equally for longitudinal waves. The diagrams in the above figures also apply, so long as we understand “displacement” to mean the longitudinal (forward or backward) pressure or density variation of air from its undisturbed equilibrium value. The relationship between wave velocity and the other parameters is also still valid:

$$c = f \lambda \quad (8.1)$$

2.2 Standing Waves

So far we have considered only very simple wave disturbances. More complicated waves are created when two or more traveling disturbances are present simultaneously in the same medium. There is a law of superposition which states that the position of a given point on the medium is determined by the sum of all the different disturbance effects. In general, any number of waves can be combined to give a more complicated wave.

A particularly interesting example occurs when two waves of equal λ, f, and A are traveling along a taut string in opposite directions. (This occurs if the wave encounters a barrier that reflects the wave back in the original direction while the original wave is still propagating.) At some particular points on the string, the two waves will always be out of phase, one wave will try to move the point up and other wave will try to move the point down. The result is that the two waves will cancel each other at this particular point, and so that point will remain stationary. This condition is known as destructive interference, and the points at which this occurs are called nodes.

At other points on the string, the two waves will move up and down together so that the amplitude of the disturbance at these points will be twice what it would be if

3The two independent possibilities for making a transverse wave are referred to as the two possible polarizations of the wave. (If the wave oscillates diagonally, it can be viewed as a combination of vertical and horizontal polarizations.)
only one wave were present. This condition is known as constructive interference and the points at which this occurs are called antinodes.

As long as the λ, f, and A of the waves remain fixed, the positions of the nodes and antinodes will not change. The pattern produced in this circumstance is called a standing wave, since it looks as if it is stationary, although it is actually the sum of two waves traveling in opposite directions. The analytic description for the displacement versus position and time with one end fixed at $x = 0$ is given by:

$$A \sin \left(\frac{2\pi}{\lambda} x \right) \cos \left(2\pi ft \right)$$ \hspace{1cm} (8.2)

A string with both ends fixed can be excited with standing waves as shown in the figure below. The fixed ends of the string cannot move, so the string must have nodes at these points. It is evident that the distance between the node at a fixed end and the first antinode is $\lambda/4$; and the distance between successive nodes (or antinodes) is $\lambda/2$.

![Figure 3: Standing Waves](image)

The positions on the string where $A \sin(2\pi x/\lambda) = 0$ correspond to a node, so whenever $2\pi x/\lambda$ is a multiple of π, i.e.:

$$\frac{2\pi}{\lambda} x = n\pi$$ \hspace{1cm} (8.3)

(x is a multiple of $\lambda/2$), we find a node. Midway between two nodes we will always find an antinode, a point where the string oscillates maximally.

Standing waves can be created in a tube of gas using sound waves. In this part of the experiment, a tuning fork vibrates over the open end of a tube containing air. The tube is sealed at the other end by the water. The motion of the fork causes longitudinal sound waves to travel down the tube. The sound wave is reflected back up by the air-water interface and the incident and reflected waves interfere with each other. The air at the closed end of the tube is cannot move freely, so in order for a standing wave to be produced, a node must exist at the there. The air in the open end of the tube is free to move; so when a standing wave is produced in the tube, the open end is an antinode.
Since the distance between a node and the nearest antinode in a standing wave pattern is $\lambda/4$, it should be evident that the shortest tube in which a standing wave can be established has a length of $\lambda/4$. A standing wave with wavelength λ can be established in longer tubes. All that is required is that a node exist at the closed end and an antinode at the open end – i.e. that the length of the air column is an odd multiple of $\lambda/4$. When a standing wave is produced in the tube, a resonance condition is established and the intensity of the sound will increase.

3 Experiments

3.1 Standing waves on a String

The first part of the experiment deals with transverse waves on a string. A long horizontal string is attached to the tine of a driven tuning fork that vibrates at $f = 60$ Hz. The other end is fixed at a point where it passes over a pulley. You can change the distance between the pulley and the tuning fork by shifting the base of the tuning fork and you can hang weights of mass M on the end of the string (which produces a string tension $T = Mg$). The apparatus is pictured in the figure below:

![Figure 4: Measuring the Wavelengths of Standing Waves](image)

Your task is to measure the wavelengths resulting from standing waves produced for various values of the tension. In the previous section, it was stated that the distance between two nodes in a standing wave is $\lambda/2$. So the wavelength is double the distance between adjacent nodes.

Measure the mass and length of the string. Calculate μ, the linear density of the string. Attach the string to the screw on the tuning fork and place it over the pulley. Put a mass of 100 g on the end of the string and choose the distance between pulley and tuning fork such that you get a standing pattern of nodes and antinodes.
• Measure the wavelength of the standing waves. You get the best results if you measure nodes in the middle of the string and if you average over several measurements.

• Calculate the velocity (including uncertainty) with which the wave propagates on the string, using the relation between frequency and wavelength.

• Analytically calculate the velocity (including uncertainty) of propagation of waves on a string from the physical properties of the string and the following formula:

\[c = \sqrt{\frac{T}{\mu}} \]

(8.4)

where \(T \) is the tension, and \(\mu \) is the mass per unit length of the string. Compare your experimental results with this prediction.

• Do this measurement/calculation for 3 different weights.

What are the main sources of error in this experiment?

3.2 Standing Sound Waves

In the second part, we measure the wavelength of standing longitudinal waves.

![Diagram of a tuning fork and air column](image)

Figure 5: Measuring the Wavelengths of Standing Longitudinal Waves
Sound waves (longitudinal waves) are set up in a long open tube, which is partly filled with water, as shown in the figure to the right. We change the height of the water column by lifting or lowering a water reservoir. Produce a sound wave using a tuning fork. There are two tuning forks, a 512 Hz one and a 1024 Hz one. You should perform the experiment with both of them. Strike the tuning fork and hold it at the top of the glass tube. As you change the level of water in the tube, you find some water levels at which the sound from the tuning fork becomes significantly louder. This occurs whenever you have created a standing sound wave in the glass tube. By measuring the distances between water levels that achieve successive sound maxima, you can determine the wavelengths of the sound waves.

As before, from the wavelengths of the standing waves and the frequencies, you can compute the velocity of propagation of the sound waves for each case. This should equal the speed of sound in air.

Remark: It is often easiest if you lower the water level continuously and hit the tuning fork somewhat hard. However, please be careful and don’t damage any equipment.

- Measure the wavelength for both tuning forks. There should be small string-rings on the glass tube that you can use to mark the levels at which you get resonance (standing waves). To improve your data try to average over several measured values. Also don’t forget to include uncertainties.

- Calculate the speed of sound for both frequencies. Do you get the same value within uncertainty? Is your value for the speed of sound close to the standard value of 340 m/s What could be reasons that you get a different value?

- Give the main sources of error and make suggestions of how the setup could be improved.

4 Applications

Biological systems that create periodic pulses (like a beating heart) are optimized for a range of operating conditions. The variations in the operating parameters often provide an important diagnostic tool. For example, the period of beats in a human heart can vary; one may ask to what extent and how often the heartbeat rate changes. To identify patterns of heart rate, one makes use of a mathematical procedure called Fourier analysis. Besides the dominant frequency of the heartbeat (about 1 Hz), there are other frequencies that correspond to changes in the heart rate; Fourier analysis uses the heart rate to make a diagram of the amplitudes of the lower frequencies present in the heart rate.
This may at first sound a little bit complicated, but the basic idea is simple. In the experiment, we find only specific standing waves for each system. With the system parameters fixed, only certain frequencies are possible: most frequencies cannot achieve a standing wave. Obviously these frequencies are special and characterize the system! If you look now at a complicated oscillation of the system and take the Fourier spectrum, you find that only these special frequencies contribute. Other frequencies don’t contribute at all. A beating human heart is, of course, much more complicated than the systems we deal with in the lab, but the basic ideas are the same!

![Heart Rate Graph]

Figure 6: Heart Rate of an Adult

This picture shows the heart rate of a healthy adult over time. As one can easily see, the heart rate changes over time. The frequencies with which the heart rate changes can most easily be seen in the Fourier spectrum (sometimes called power spectrum) in the next figure.

One immediately sees a prominent change in the heart rate with a frequency of about 0.4 Hz. Therefore, roughly every 2.5 s the heart rate of this person changes. This frequency corresponds to the many little spikes we saw in the first diagram. (Another characteristic frequency is at about 0.02 Hz, corresponding to a change about every 50 s. We will not deal with this part here, even though it contains valuable information.)

Where does the change every 2.5 s come from? It turns out that the person took a breath about every 2.5 s. The heart then speeds up slightly to pump more blood...
through the vessels of the lung, where the blood is oxygenated. Subsequently, it slows down again. (This particular frequency is called the respiratory frequency.)

The process of speeding up and slowing down is governed by the autonomic nervous system. Some diseases (e.g. diabetes) can damage the autonomic nervous system and therefore stop this adaptation of the heart rate. For example, as diabetes reaches its final stage the peak in the Fourier spectrum at the respiratory frequency vanishes.

This method has the nice feature that it is non-invasive, relatively simple, and shows dynamic processes rather than snapshot pictures.

5 Lab Preparation Problems

Waves:

1. Is a wave on the water surface a longitudinal or transverse wave?

2. The wavelength of visible light is between 400-800 nm. What is the frequency of visible light?
Standing Waves:

3. A transformer is humming at a frequency of 60 Hz and produces a standing wave in air. What is the distance between adjacent nodes? What is the distance between adjacent antinodes?

4. You have a string and produce waves on it with 50 Hz. The wavelength you measure is 7 cm. What is the speed of the wave on this string?

5. You put a mass of 400 g on the string of experiment 1. (The string is 50 cm long and weights 12.5 g) What distance between adjacent nodes do you then expect for a frequency of 100 Hz. (Use $g = 10 \text{ m/s}^2$)

6. With a 660 Hz tuning fork you measure a distance of $25 \pm 2 \text{ cm}$ between adjacent nodes. Is the value of $c = 340 \text{ m/s}$ within the uncertainty of your measured value?

Explanations:

7. If you blow air along the top of an open soda bottle you can excite a standing wave in the bottle and you hear a sound. Explain what happens if you put some water into the bottle and then perform the same experiment!

6 Comments for TA

6.1 Required Error Propagation

1. Calculate error in the velocity of standing waves in the string propagating uncertainty in measured wavelength λ and string length L. Calculate error for all three measurements.

2. Calculate error in the velocity of standing waves in the tube propagating uncertainty in measured wavelength λ. Calculate error for both tuning fork frequencies.

6.2 Required Prelab Questions

1. Complete prelab questions 1, 5, 6, 7

6.3 Additional Comments

1. Make sure students strike the tuning fork hard enough to sustain the produced sound long enough to measure the wavelength.

2. Make sure students know raising and lowering the water bottle will change the level of water in the tube.
3. Make sure students don’t squeeze the bottle as this may spill water.
Experiment 1-9
Waves II: The Oscilloscope and Function Generator

1 Introduction

While we found ways to observe the waves in the Experiment 1-8 with our own eyes and ears, we will explore other types of waves and the instruments that scientists use to record them. In this lab we will introduce two experimental instruments that are used extensively in practical physics research, but can be rather intimidating when used for the first time. The first tool is the function generator. As its name implies, it outputs voltages in the form of a periodic, mathematical function - usually a sine wave. They can also produce square or triangle waves, and usually have the functionality to adjust the frequency and amplitude of the wave. Oscilloscopes are tools to view periodic phenomena. Often, physics experiments probe signals that will change too rapidly in time to record by looking at a needle with our own eyes, for example. The oscilloscope allows these signals to be interpreted in a visual way that we, as humans, can accurately interpret. The exercises in this lab will familiarize you with the equipment, and show you some of the applications.

In Experiment 1-8, we studied both transverse waves propagating along a string, and the pressure waves of sound. Both of these examples are very common examples of physical waves, but there are many other wave phenomena. Physical waves can also be found in ultrasound monitors or earthquakes as pressure waves, in water as traveling waves and even as shock waves within the plasma of an exploding star. In addition to physical waves, electromagnetic radiation is a wave phenomenon that is used extensively in our lives. Radios, microwave ovens, lasers, and many more modern equipment all use electromagnetic waves, or light. Furthermore, in any system that can be described as periodic, a detector will pick up a signal that varies in time, and generally, that signal will be read out in the form of a voltage. In conclusion, a detector (such as an oscilloscope) that enables scientists to study and analyze wave phenomena is very useful indeed.

2 Theory

2.1 Time varying voltage signals

A common way to represent a signal is through voltages. A voltage is a measure of electrical energy, and, just like gravitational potential energy, must be stated with re-
spect to some sort of “ground”. Therefore, it is really only useful to specify a difference in voltage, much like we would state a difference in gravitational potential energy. For example, a 9-volt battery will always carry a 9 volt difference in energy between its leads. This is a constant voltage signal. In this lab, we want to mostly use two cables: one to carry the signal, and one to carry the ground. On most electronic devices, the ground goes to the black lead, and the signal goes to the red lead. If we wanted to send information, such as a wave, from one end of the wire to the next, we could vary the voltage difference sinusoidally in the signal wire. This would be a time varying voltage signal.

A practical question would be, “How do you change a physical signal, such as a person’s pulse, or someone’s voice, into a voltage?” We will explore this question, and the related question of how to read voltage signals, in this lab.

2.2 Oscilloscope

When a voltage signal is sent into the input of an oscilloscope, the scope will plot that voltage on the vertical axis of the screen. After a tiny time interval, it looks at the input again, and plots the new value of the voltage slightly to the right of the last point. Repeat.

So what does this look like? We get a voltage vs. time graph, with the earliest times all the way on the left, and the most recent times on the right. For example, if you send in a constant voltage into the scope, you will get a flat line, since every time it looks at the input, it reads the same value. If you send a sine wave into the scope, you will get a sine wave scrolling across the screen from left to right.

The key point of the oscilloscope is that we can change the scale of the axes, meaning that even if the period of the signal is seemingly absurdly short, such as a couple microseconds, we can adjust the horizontal axis so that we can still see the wave. Also, we can change the vertical scale to look at a variety of voltage ranges.

The final, and arguably most useful thing about the scope is its ability to ‘trigger’. All this means is that it can sync up a periodic signal’s start and end points on the screen. When the signal we are trying to plot fills up the whole screen, the scope will start plotting again at the left hand side. But if it did so right away, and the wave we are looking at did not exactly fit onto the screen, then the second plot of the wave would look different from the first, and will look like it’s scrolling, which is confusing! The “trigger level” tells the scope not to start plotting the signal when it leaves the screen until it reaches a certain voltage. This will ensure that the wave will look like a standing wave on the screen – which makes it super easy to examine and analyze. The result is that a properly triggered signal will no longer scroll, but look as though it is standing still. This is a very useful feature, but is best demonstrated in practice,
so don’t worry if this is unclear.

Oscilloscopes will be found in any physics lab, and most science labs in general. Since most modern experiments output some sort of voltage signal that needs to be examined, they offer scientists a quick way to see what’s going on in real time.

2.3 The function generator

A function generator outputs a basic signal. What do we mean by basic? We mean sine waves, triangle waves, and square waves, all outputted as a voltage, changing as a function of time. For example, for the sine wave, the function generator outputs the function: \(V(t) = A \sin(\omega t) \), where \(A \) is the amplitude of the wave and \(\omega \) is the frequency.

This is useful in any physics lab, given the options to tune the frequency and amplitude of the output wave. It is generally used when one wants to turn on and off equipment, say electrodes, or laser intensity, at a specific frequency.

For both the Oscilloscope and the Function Generator, there is a cheat sheet at the end of this lab for your reference.

3 Procedure

3.1 Use the function generator to create waves

As described above, a function generator outputs a time-varying voltage in the form of a wave. The function generators in this lab can output sine, square, or triangle waves.

Begin by hooking up the MAIN output of the function generator to the oscilloscope using the cables provided as in Figure 1. Remember that you need to use both ground and signal cables.

- Look at a 0.5 Hz sine wave on CH1 of the oscilloscope. You can set this on the function generator by selecting the 1 Hz RANGE button, and turning the frequency dial to 0.5. Set the amplitude of the wave such it is 2 V from the bottom to the top (peak-to-peak). Set the SEC/DIV so that you can see the signal “being drawn” across the screen. Since the scope is more accurate at frequency counting than the function generator knob, use the horizontal scale to confirm that your sine wave is truly at 0.5 Hz. You can press RUN/STOP to freeze the image.

- Now change the frequency of the sine wave to 10 kHz. You will need to change the horizontal scale (SEC/DIV) to something faster to see this wave. Set the trigger
source to be CH1. This means that the scope is using the signal itself to figure out when to trigger. Adjust the trigger level while holding down “TRIGGER VIEW”, and set the dashed line somewhere on the wave. Does the signal look like a standing wave?

- What is the maximum amplitude that the function generator can produce? What is the maximum and minimum VOLTS/DIV that the oscilloscope can read? What is the minimum SEC/DIV that the scope can read? What does this tell you about the range and type of signals the scope is useful for and not useful for?

- One measure of the performance of a device is its signal-to-noise ratio, or SNR. The signal on a sine wave can be interpreted as the peak-to-peak voltage, or twice the amplitude. The noise is the variations on that wave, or the thickness of the signal. Turn down the amplitude of the wave using the function generator until it only a few 10s of millivolts peak-to-peak. You will need to adjust the trigger level. Zoom in on your 10 kHz sine wave by decreasing the VOLTS/DIV on the oscilloscope, until you can see the noise on top of the signal, and measure its amplitude. What is the signal to noise ratio?

3.2 Human pulse

Oscilloscopes allow us to analyze periodic phenomena qualitatively and quantitatively. Most sensors output some sort of voltage signal. In this part, you will use a pressure sensor to measure your pulse. You need to power the pressure sensor circuit board using 5V from the B-output of the power supply, connected to VCC and to GND. See Figure 2. Your TA can help you with this.

- When examining a person's pulse, the scope can be useful for determining the
frequency, amplitude, and pulse duration. Think of a couple simple experiments you can do to see how to change these properties of a human pulse. For example, you should be able to increase the frequency of the pulse by doing some jumping jacks.

- Put the green sensor on your index finger and plug the analog signal (AO) from the circuit into the oscilloscope. Turn the horizontal knob until the sec/div is something long (500 ms - 1 s) Measure the three quantities identified above, and try those experiments you thought of. You can “freeze” the image on the scope by pressing the “Run/Stop” button.

- Given the structure of the pulse signal, measuring the pulse width is not well-defined. The digital output (DO) of the sensor circuit puts out a high voltage once the pressure goes above a certain level, and goes back to zero when it goes below that threshold. This results in a square wave that has better defined boundaries
of where the pulse begins and ends. Measure the pulse width in this way.

- What is the SNR?

<table>
<thead>
<tr>
<th>Connector Color</th>
<th>Connector</th>
</tr>
</thead>
<tbody>
<tr>
<td>Black</td>
<td>Ground</td>
</tr>
<tr>
<td>Blue</td>
<td>DO</td>
</tr>
<tr>
<td>Yellow</td>
<td>AO</td>
</tr>
<tr>
<td>Red</td>
<td>VCC</td>
</tr>
</tbody>
</table>

3.3 Sound waves

As we explored in the last lab, standing sound waves can be made and amplified in certain types of resonant cavities, and the length of these cavities can tell us properties of the waves. Sound waves can also be digitized using a microphone, and then analyzed using an oscilloscope. In this part of the lab you will create and detect sound waves through electronic means, and learn more about the trigger function of the oscilloscope.

Remember that sound waves are longitudinal pressure waves, created by moving regions of alternating high and low pressure. For a speaker to make sound, an electronic voltage signal, like the ones above, are used to move a membrane forward and backwards, pushing air at set intervals to create a sound wave as described above. To detect sound waves, a microphone does exactly the opposite. A membrane is moved around by pressure waves in the air, and this motion is detected electronically, much like the pressure sensor in the pulse reader. This is similar to how your ear works!

The similarities in creating and detecting waves electronically means that we can use speakers as microphones and vice-versa. The only difference is that each tool is optimized for the function indicated by its name. A speaker makes a poor microphone, and a microphone makes a poor speaker, but the simpler these components are, the better their uses can be interchanged. Note that unfortunately, it is not possible for us to make noises with our eardrum.

- To create a sound wave, hook up the output of the function generator to the headphone speaker, as partially shown in Figure 3. There is a tab on the side of the headphone adapter to tell you which pin corresponds to ground. Try a sine wave with a frequency of around 500 Hz to begin with, turn up the amplitude to a bearable level, and tune the frequency until you hear a tone you can listen to without cringing. What are the frequency limits of your hearing range? How do the triangle or square waves sound in comparison to the sine wave?

- Also hook up this signal to CH1 on the oscilloscope so you can see what exactly you are sending to the speaker. Make sure red matches red and black matches
• Hook up the other speaker to CH2 on the oscilloscope (Press the CH2 MENU button to have it show up on the screen), and place the headphone speaker over it so that they are facing each other. Turn up the sensitivity of the oscilloscope until you can see the detected sound wave. You may want to strap a rubber band around both speakers to keep them together.

• What is the signal to noise ratio?

• What is the ratio of the amplitudes between the original signal and the detected signal?

• What is the phase of the detected wave relative to the source wave? Can you explain why?

• Scroll around the frequency a bit and see if there are any resonances (places where the amplitude of the detected signal increases dramatically). What do these resonances mean?

• Tune the frequency until it is out of your hearing range (higher or lower). Perhaps turn the amplitude down if you decide to go higher. Can you still see the signal? How high or low can you go before there is no detected signal? Why?
Scope and Function Generator Cheat Sheet

Key to the oscilloscope

1. **CH1 POSITION** This knob simply adds a constant value to any point that is going to be displayed on the screen for CH1.

2. **VOLTS/DIV** This knob sets the y-scale of the plot. You are changing how many volts each vertical division on the graph corresponds to. You can see the value on the bottom of the screen for each channel.

3. **CH1 Input** Where you plug in your input signal. Note that you always need to put in two wires (plus/minus), since voltage is always relative.

4. **HORIZONTAL POSITION** This knob allows you to scroll left or right on the signal, which is like looking forwards or backwards in time.

5. **SEC/DIV** This knob sets the x-axis scale on the screen. Each box will correspond to the number of seconds indicated on bottom of the screen.

6. **EXT TRIG** This is where you plug in the trigger signal, that is, some periodic wave that you know is at the same frequency as the signal you are trying to analyze.
7. **TRIGGER LEVEL** Whether you are triggering off of an external signal, or the CH1 or CH2 input signals, this knob will set where on the trigger signal we are triggering from. In other words, what part of the signal we are synching up the timing with.

8. **SET TO 50%** If you are having trouble setting the trigger level correctly, this button will automatically set it halfway between the max and min of the trigger signal. From here, you can usually adjust easily.

9. **RUN/STOP** Freezes the current image on the screen.

10. **MEASURE** Brings up the measure menu, from which you can access the internal measuring functions of the scope, including readings of frequencies for input signals.

11. **AUTOSET** You can press this button if you are having issues getting anything to work properly. But once you do, you’ll need to look through and make sure you understand what has changed.

Additional notes

- You can turn on or off each channel by hitting the CH 1(or 2) MENU button a couple times. These buttons also display options for each channel, including whether you want AC or DC coupling. With this option, you can choose to couple to direct current or alternating current signals. Coupling to a signal is another way of saying the scope is sensitive to it. Usually we will only ever need to be DC mode. AC mode is mostly for looking at noise, or periodic signals that have a large offset. For this lab, keep it in DC mode.

Key to the function generator

1. **Amplitude.** Adjusts the peak to peak amplitude of the outgoing wave.

2. **DC offset.** Adds a constant value to every point on the wave.

3. **Duty.** Adjusts the width of the concave part of the wave relative to the convex part. Is mostly for use with the square wave. In that case, it will make the top-bounded squares wider, and the lower bounded areas narrower.

4. **Output and Sync.** Outputs the desired function. Sync outputs the same thing but with lower amplitude.
4 Comments for TA

4.1 Required Error Propagation

1. Calculate error in the width of the signal read from the pulse sensor. You will have to think about the largest sources of uncertainty, quantitatively describe them, and use them to determine the error in pulse width.

2. Calculate error in the ratio of the amplitudes between the original signal and the detected signal in the speaker experiment. Use the SNR for both signals as the source of uncertainty.
1 Introduction

Thermodynamics is critical in presiding over how the universe functions. From explaining how molecular bonds in a liquid break as the particles become gaseous, to explaining the disappearance or “evaporation” of black holes, thermodynamics is instrumental in the dominion of the microscopic through macroscopic. Over the course of the Earth’s history evolution began and has proceeded by reacting to and occasionally altering the world’s temperature - accustoming itself to the continuity of general thermal equilibrium, while adapting to minor and major fluctuations that occur over periods of days days to millions of years. Though typically overlooked, thermodynamics is essential in our interactions with the world and the decisions we make on a near-constant basis: from dressing warmly to combat the cold air, to popping our ears upon changing altitudes, to constructing buildings that insulate us from weather.

The purpose of this lab is to study three significant consequences of thermodynamics. Specifically, we want to:

1. verify the ideal gas law,
2. understand thermal conductivity and how it varies in different materials, and
3. observe and comprehend certain simple thermal processes and their effects on an ideal gas.

2 Theory

2.1 Ideal Gas Law

The ideal gas law is the equation of state for a gas of particles (typically atoms or molecules) under “normal” lab settings (i.e. temperature is sufficiently high to negate weakly attractive forces between molecules, and the volume of the gas is relatively large compared to that of the particles). It reads

\[PV = NkT \]

(10.1)

where \(P \) is the pressure of the gas, \(V \) is the volume it occupies, \(N \) is the number of particles, \(k \) is Boltzmann’s constant (\(1.38 \cdot 10^{-23} \text{ J/K} \)), and \(T \) is the temperature (in
Table 10.1: Thermodynamic constraints that permit simplifications in the ideal gas law and the First Law of Thermodynamics.

<table>
<thead>
<tr>
<th>Constraints</th>
<th>Name</th>
<th>First Law Simplified</th>
<th>Ideal Gas Law Simplified</th>
</tr>
</thead>
<tbody>
<tr>
<td>$P = \text{Constant}$</td>
<td>Isobaric</td>
<td>$\Delta E = Q - W$</td>
<td>$V \propto T$</td>
</tr>
<tr>
<td>$V = \text{Constant}$</td>
<td>Isochoric</td>
<td>$\Delta E = Q$</td>
<td>$P \propto T$</td>
</tr>
<tr>
<td>$T = \text{Constant}$</td>
<td>Isothermal</td>
<td>$0 = Q - W$</td>
<td>$P \propto V^{-1}$</td>
</tr>
<tr>
<td>$Q = 0$</td>
<td>Adiabatic</td>
<td>$\Delta E = W$</td>
<td>$PV \propto T$</td>
</tr>
</tbody>
</table>

Kelvin). You may also have seen this written as $PV = nRT$ where $n \equiv N/N_A$ is the number of moles, and $R \equiv kN_A$ is known as the gas constant ($N_A = 6.02 \cdot 10^{23}$ particles/mole is Avogadro’s Number). You can use either form of the ideal gas law in this experiment.

For the experiments in Sections 3.2 and 3.3 we will be manipulating gases by changing their volumes while keeping the number of particles N constant. In the Section 3.2 we will monitor P and T as our container suddenly shifts from V_1 to V_2. To understand how our gas reacts, we need to use the First Law of Thermodynamics

$$\Delta E = Q - W$$

(10.2)

where ΔE is the internal energy of the gas, Q is any heat added, and W is the work the substance does by expanding in volume. Think of the First Law as conservation of energy, stating that any added (or subtracted) heat must equal the change in energy of the gas plus the work that gas does on its surroundings.

In general we must consider Equation 10.2 to evaluate how Equation 10.1 changes under various thermodynamic processes. This can often be complicated, as even with a gas of fixed N particles, P, V, and T are all subject to change. However, we are often interested in processes that leave one of these variables fixed, as seen in Table 10.1. For this lab we are going to mainly consider isochoric and adiabatic processes.

In the case of a sudden or instantaneous change in volume, there is no time for heat to be exchanged between a gas and its encompassing environment, so $Q = 0$. This is known as an adiabatic compression/expansion. Experiments in both Sections 3.2 and 3.3 will involve compressions, allowing us to quantitatively and qualitatively, respectively, observe the effects. Because no heat is allowed to escape, adiabatic compression is typically the fastest way to increase the thermal energy of the gas. In Section 3.3 we will demonstrate this effect to light a piece of paper on fire by suddenly compressing a small volume of air.

It is also useful to understand isochoric processes: how heat is exchanged between
a gas at constant volume and its surroundings. This concept is likely very familiar in your own life: two (not necessarily different) materials at different temperatures that are in contact with each other will attempt to attain thermal equilibrium - that is, they will exchange heat until they both have the same temperature. In this lab we will demonstrate that after a gas in a chamber is heated up and then kept at constant volume, its temperature will slowly decline due to thermal exchanges with the surrounding air in the room.

2.2 Thermal Conductivity

The end of the previous section might instill a desire to understand how materials at different temperatures equilibrate when they cannot directly interact with each other, but instead have a medium between them. Can they exchange heat? If so, what role, if any, does the medium separating them play?

There are three methods responsible for transporting heat: convection, radiation, and conduction. Convection is the mass motion of a fluid - typically as the result of a temperature imbalance. A familiar example is boiling a pot of water: the water near the bottom of pot (closest to the stove burner) and in the center heats faster than the rest of the pot. As a result, it becomes less dense, rises, and is replaced by colder, denser water.

Radiation, as its name suggests, is the transferring of heat through radiative processes - typically light waves. You are familiar with this too - every time you step outside and feel sunlight on your face, you are extracting heat from the Sun via radiation.

The final way materials can transmit heat is through conduction, which often occurs through solids. We know solids can change temperature, but surely this can’t be through convection (by definition atoms or molecules in a solid are confined in space) or radiation (the average solid doesn’t emit anywhere close to enough radiation to act as a heating or cooling mechanism). Thus, conduction is the process where one particle (molecule or atom) transfers its energy to an adjacent particle at a lower temperature. You can think of this process as an assembly line, where Particle 1 agitates Particle 2, Particle 2 then agitates Particle 3, etc. where those with greater energy (temperature) lose some of their heat to those with lesser. In this lab we will conduct an experiment to observe and better understand how thermal conduction operates.

One essential function we use thermal conductivity for is the insulation of buildings. Imagine it is very hot outside - so much so that you want to use your air conditioner. Why doesn’t the cool air you generate inside your apartment immediately dissipate into the outside world? Or why once your apartment is cooled, will it begin to heat
up again if your turn your air conditioner off? Yes, you have walls and windows, but shouldn’t they allow the cooler temperature inside and the warmer outside to mix? Yes, they should - and they do - which is why often the materials used try to minimize the rate at which this occurs. If you have opposing sides of a material of thickness \(h \) in contact with a substance at temperatures \(T_{\text{hot}} \) and \(T_{\text{cold}} \) over an area \(A \) for a time \(t \), we can evaluate the heat transferred \(Q \) through the thermal conductivity equation

\[
Q = \frac{kA(T_{\text{hot}} - T_{\text{cold}})t}{h}
\] (10.3)

where \(k \) is the material’s thermal conductivity. It should be clear that in an ideal system the heat \(Q \) is the heat transmitted by the medium; therefore, the \(Q \) lost by the substance at \(T_{\text{hot}} \) is gained by the other at \(T_{\text{cold}} \).

Normally the heat \(Q \) that a substance acquires or loses is dependent on how much its temperature changes via the equation \(Q = mc\Delta T \) where \(m \) and \(c \) are its mass and specific heat, respectively. Specific heat varies with material, and is ultimately a measure of how much heat is required to produce some \(\Delta T \).

However, a substance can also absorb or emit heat when it undergoes a phase change via creating destroying the various molecular bonds that differentiate a substance between its solid, liquid, or gaseous states. For example, we know water has some preference in the orientation of its \(H_2O \) molecules that weakly binds them together - creating a more structured molecular environment (liquid) than would exist in water vapor (gas). Furthermore, at 373 K \(H_2O \) can exist as both a liquid and a gas; yet evaporation by definition demands changing the structural alignment of these bonds. Such an alteration requires additional energy, which we call latent heat. Importantly, latent heat is not responsible for raising the temperature of an object - it is solely the energy necessary for breaking or constructing intermolecular bonds. In such transitions the heat is given by

\[
Q = mL
\] (10.4)

where \(m \) is still the mass of the material that undergoes the phase change and \(L \) is the latent heat. As with heat capacity, latent heat varies between materials.

3 Procedure

In this lab we test that the ideal gas law and thermal conduction under “normal” (e.g. room temperature) conditions behave as outlined in Section 2 and via Equations 10.1 and 10.3. Please read the instructions carefully; you are asked to switch between experiments at times in order to minimize the total time it takes you to complete the lab.
3.1 Thermal Conductivity

1. Begin by ensuring the stainless steel tank of the Steam Generator is 1/2-3/4 full (note that two groups will be sharing a single Steam Generator). This can be done by lifting the rubber stopper to check the water content - if it is too empty, use a provided cup to add water; if it is too full, use the turkey baster to remove some. Set the dial to “HIGH” and power switch to “ON”. The plastic tubes should NOT yet be connected to the two ports on the rubber stopper or the Steam Chamber on the Thermal Conductivity Apparatus. **CAUTION: The stainless steel tank becomes HOT when the unit is on.**

2. Select any one of the five material samples and using the digital caliper measure its thickness h. Slide it under the clamps on the Thermal Conductivity Apparatus as shown in Figure 1a such that it is pressed tightly against the water channel to prevent leakage. Tighten the thumbscrews to lock it in place.

3. Take the block of ice in the cup and run it under gentle water for 5-10 seconds. The water does not need to be hot. You should hear the ice crack and loosen. Take it out of the cup and place it on the first material sample. Put a paper cup beneath the open end of the water channel to collect water that is melted.

4. Because the surface of the ice is likely below 273 K (it should be at the same
temperature to which the freezer was set), we will let this sit here for a couple minutes before we begin taking data. During this time, it is recommended you begin the next experiment in Section \textbf{3.2}.

5. After several minutes the ice should begin to melt at a constant rate. Lift the ice and measure the dimensions l_B and w_B of the surface that is touching the sample material.

6. Take a second paper cup, measure its mass, and replace the first paper cup under the water channel with this one, so that it catches the melted ice. Begin your timer. You can empty the first paper cup.

7. Collect the melting ice for a time t_0 (suggested 5-10 minutes, or when you feel the cup has accumulated sufficient water) and remove it (you should replace it with the first cup to catch continued water drainage).

8. Attach the ends of the shorter plastic tube to one port on the Steam Generator, which by now should be producing steam, and the upper port on the side of the Steam Chamber. Connect the longer tube to the lower port and place the open end into the white plastic pail below the bench that will capture water from steam cooled inside the Steam Chamber. Let the steam run for a few minutes so the sample material can obtain a steady heat flow. \textbf{CAUTION: The rubber tubes become HOT when unit is on. Wear provided gloves when handling.}

9. Measure the new mass of the second paper cup and subtract from it your empty cup mass measurement to get the mass of the melted water m_0. You can then empty the cup.

10. After several minutes when the heat flow through the sample material appears to be constant, replace the first cup with another empty paper cup and repeat Steps 6, 7, and 9, only now recording t_1 and m_1 - the time and mass under these new conditions. Note: the mass of the “empty” cup may not be the same in both runs - there may be residual water from the first measurement that adheres to the cup and thus has a slight adjustment on its original mass.

11. Finally, lift the remaining ice block and re-measure the dimensions of the surface touching the sample material. Record this as l_A and w_A.

12. \textbf{Data and Calculations.} This should serve as a walkthrough for finding κ via your measurements and Equation \textbf{10.3}. Be sure to carry your uncertainty from your measurements through your calculations. It is recommended you copy and complete Table \textbf{10.2}.

112
Table 10.2: Suggested table for lab report.

<table>
<thead>
<tr>
<th>Material</th>
<th>κ (Watt/m·K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Masonite</td>
<td>0.047</td>
</tr>
<tr>
<td>Wood (Pine)</td>
<td>0.11-0.14</td>
</tr>
<tr>
<td>Lexan</td>
<td>0.19</td>
</tr>
<tr>
<td>Sheet Rock</td>
<td>0.43</td>
</tr>
<tr>
<td>Glass</td>
<td>0.72-0.86</td>
</tr>
</tbody>
</table>

Table 10.3: Accepted values for the thermal conductivity κ for each of the provided sample materials.

- Because the ice is surrounded by air at room temperature, there is a small contribution of ice melt that is not caused by thermal conductivity from the steam. Thus, $R_1 \equiv m_1/t_1$ is the rate of melting due to the thermal conductivity of the sample material plus that of the room temperature air encompassing the remainder of the ice block. We want to subtract off $R_0 \equiv m_0/t_0$ - which corresponds to the rate of ice melt due solely to the heat from the temperature of the room. This value, $R = R_1 - R_0$ should give us the amount of mass melted per unit time caused specifically by the sample material’s thermal conduction.

- Using Equation 10.4 we find $Q/t = mL/t = RL$ (the amount of heat absorbed by the ice per unit time) where $L = 334,000$ J/kg for the ice/water phase transition.

- Another consequence of the room melting the exterior of the ice block is there may be a slow decrease in the area of contact of the ice/sample material barrier. It is likely then you found $l_A < l_B$ and $w_A < w_B$. To remedy this we can compute the average dimensions l_{avg} and w_{avg}, and using these estimate the average area $A = l_{avg}w_{avg}$.

- Lastly, be sure to use T_{hot} and T_{cold} in Kelvin or Celsius (the difference between two temperatures in both these systems is the same). Calculate the thermal conductivity κ for your sample material. How does it compare to its accepted value in Table 10.3? Discuss possible sources of error, what role they played (if they were large or small), and how one should adjust for them if they were interested in obtaining greater precision/accuracy.
3.2 Ideal Gas Law

In this experiment we will verify the relation between pressure, volume, and temperature for an ideal gas. Be sure to reference the Ideal Gas Apparatus setup in Figure 2 for the following steps.

1. With the pressure connector unplugged from the sensor (see Figure 3), push the plunger all the way in until it hits the mechanical stop and bottoms out. Record this volume as V_1; it should be around 20 cc.

2. Lift the plunger until the volume of the plunger is at some new value around 40 cc. Record this as V_2. Attach the pressure connector and verify the temperature connector is also plugged in.

3. Ensure the USB output is connected to the computer. Open the DataStudio file “Ideal Gas Law” located on the desktop. You should see graphs and a chart to record pressure and temperature as a function of time.

4. Click Start. The program should begin taking data. Holding the base of the syringe flat against the table, fully and quickly compress the plunger such that it again bottoms out. Hold it in this position until the temperature and pressure have stabilized and stopped changing. This should take approximately 30-45 seconds. Note this is an isochoric process, as your hand preventing the plunger from moving keeps the volume constant while P and T change.

5. Release the plunger and allow it to expand back out on its own (it may not return to V_2). Again, permit the pressure and temperature to approach at some
Figure 3: Disconnecting the pressure connector allows one to change the volume of the gas chamber without affecting the pressure.

equilibrium values. Click Stop.

6. Data and Calculations - Constant T

- Highlight a section of the pressure graph early in the run before the compression (around V_2). You should see the corresponding (roughly constant) values show in the data table - call this P_2.

- Highlight a section of the pressure graph just before you released the piston (at V_1). Again, use the roughly constant values in the data table to determine the pressure P_1.

- You should notice that at both these values, the temperatures were approximately the same. Why is this? How does this relate to Section 3.1? Because the gas chamber does not allow any air molecules to escape (i.e. N is constant) we find

$$P_1 V_1 = NkT = P_2 V_2 \quad \text{or} \quad \frac{V_1}{V_2} = \frac{P_2}{P_1}. \quad (10.5)$$

Are these equal? How much do they differ by? It turns out both V are off by a common factor; the volume reader does not account for the small region of tubing that connects the gas chamber to the sensor. If we now factor in this small quantity V_0 we can write

$$\frac{V_1 + V_0}{V_2 + V_0} = \frac{V_1'}{V_2'} = \frac{P_2}{P_1}. \quad (10.6)$$

where we define the true volumes $V_1' = V_1 + V_0$ and $V_2' = V_2 + V_0$. Solve for V_0.

3. Procedure

- Why doesn’t the plunger return to its original volume V_2 after an extended period of time? (Hint: consider the force that the pressure from the gas exerts upward on the plunger, and any forces that may oppose it.)

7. Data and Calculations - Varying T

- Highlight a region on the temperature graph at the beginning of the run before the compression (it does not matter if it is the same point as above). Record the pressure P_3 and temperature T_3.

- Highlight a region on the temperature graph where T is a maximum. Record the pressure P_4 and peak temperature T_4. Note: it is important you choose a set of points at the same time where T is a maximum, even if this does not correspond to P being a maximum.

- Calculate

$$\frac{P_3V_2'}{T_3} \quad \text{and} \quad \frac{P_4V_1'}{T_4} \quad \text{(10.7)}$$

and determine if they are equivalent. (Remember to include V_0 in your volume measurements as with last section.) Note that here we are assuming the temperature is a maximum when the plunger is fully compressed. Using Equation 10.2 and Section 3.3, explain why quickly compressing the plunger was essential to this result. Related to this, qualitatively explain why there was a dramatic increase in P (much more than the inverse ratio of the volumes).

- When the plunger is finally released, what initially happens to the temperature? Why?

8. Exit out of DataStudio. Do not save your data.

3.3 Adiabatic Compression (Demo)

This experiment will be a demonstration of using adiabatic compression to ignite a small piece of tissue paper. This only needs to be done once in front of the entire class and you do not have to take data - however, you should be able to explain your observations with the assistance of Section 2.1.

1. Remove the piston from the Compression Ignitor and with the loading rod, push a small ($\sim 1 \text{ cm}^2$) wad of tissue paper into the lower part of the glass tube. Be careful to not crumble the tissue paper much, so that its surface is maximized.

2. Carefully remove the loading rod and reinsert the piston. Place the base of the Compression Ignitor on the surface of the table and securely hold the tube with one hand. It is recommended you dim or turn off the lights in the room.
Figure 4: Diagram of how to setup and use the Compression Igniter.
3. With the palm of your hand, quickly slap down on the knob of the piston so it rapidly goes down the cylinder. You should see the paper ignite. Note: it requires a fair amount of force to light the tissue. Consequently, this only needs to be done once per class, by either the TA or a student in the lab section. If the paper does not initially ignite, try again. If after several attempts it has still not ignited, try replacing the wad of paper with a smaller sample.

4. Questions

- What happens to the air as the plunger is compressed? How does this lead to the paper lighting on fire?
- Why is compressing the plunger quickly essential to this experiment? How would the results change if you did so slowly? Why?

4 Comments for TA

4.1 Required Error Propagation

1. Calculate error in the thermal conductivity constant κ by propagating uncertainties in measured area A, thickness h, and heat transfer rate $R = Q/t$.

4.2 Additional Comments

1. Make sure the boiler is properly connected so the students don’t have to touch it (they may burn themselves). The boiler should be directly connected to the steam box and the steam box should output to a collection bucket (for condensed water vapor).

2. Suggest to the students that they find a way to support the ice block while measuring melting rate. In the past, students have had problems with ice blocks slipping off the stage.

3. Identify the various materials supplied for testing the thermal conductivity constant. Some materials are not labeled and have caused confusion for students in the past.