The average theorem

In a region with no charges, where
\[\nabla^2 V = 0 , \] (1)
the potential at any point \(\vec{r}_0 \) is identical to the average of the potential on a sphere centered at \(r_0 \), with arbitrary radius \(R \):
\[V(\vec{r}_0) = \frac{1}{4\pi R^2} \int_{\text{sphere}(\vec{r}_0, R)} V(\vec{r}) \, da \] (2)

Physicist’s proof:
Evidently the property (2) must hold for an infinitesimally small sphere centered at \(\vec{r}_0 \). If \(V \) is continuous, its value at \(\vec{r}_0 \) is the same as the values it takes in an infinitesimally small region around \(\vec{r}_0 \). Now, if we prove that the r.h.s. of eq. (2) in fact does not depend on \(R \), we are done: if the theorem holds for \(R \to 0 \), and the r.h.s. is \(R \)-independent, the theorem holds for all \(R \)’s. Without loss of generality, we can choose the origin of our coordinates to be \(\vec{r}_0 \) itself. This simplifies the notation somewhat.

Suppose we slightly vary \(R \):
\[R \to R + \delta R . \] (3)

How does the r.h.s. change? We are computing an integral over a slightly larger sphere than the original one. So, first of all the area element \(da \) is affected by the change in \(R \). However since we are also dividing by the total area \(4\pi R^2 \), the combination of these two factors is unchanged. That is, the quantity
\[\frac{da}{4\pi R^2} = \frac{1}{4\pi} \sin \theta d\theta d\phi \] (4)
is manifestly \(R \)-independent, because it only depends on the angular variables on the sphere—not on its radius. The other thing that can change by varying \(R \) is the values the potential itself takes: on a slightly larger sphere, the potential is slightly different. By how much? Starting from any given point \(\vec{r} \) on the original sphere, we draw a radial outgoing infinitesimal vector of length \(\delta R \). This way we “generate” the new sphere. For any \(\vec{r} \), the potential at the slightly displaced point defined this way is
\[V(\vec{r} + \hat{r} \delta R) \equiv V(\vec{r}) + \delta R \hat{r} \cdot \nabla V(\vec{r}) \] (5)
(this is one of the fundamental properties of the gradient of a function). Therefore, the variation of the r.h.s. of eq. (2) under (3) is
\[\delta \left[\int_{\text{sphere}(\vec{r}_0, R)} V(\vec{r}) \frac{da}{4\pi R^2} \right] = \delta R \int_{\text{sphere}(\vec{r}_0, R)} \nabla V(\vec{r}) \cdot \hat{r} \frac{da}{4\pi R^2} \] (6)

For a sphere the unit radial vector \(\hat{r} \) is the same as the normal unit vector \(\hat{n} \), so that \(\hat{r} da = d\hat{a} \). Therefore we get
\[\frac{\delta R}{4\pi R^2} \int_{\text{sphere}(\vec{r}_0, R)} \nabla V(\vec{r}) \cdot d\hat{a} = \frac{\delta R}{4\pi R^2} \int_{\text{volume}} \nabla^2 V(\vec{r}) \, d\tau = 0 , \] (7)
where we used Gauss’s theorem to express the surface integral as the volume integral of a divergence, and we used that \(V \) obeys Laplace’s equation (1) in the region of interest. In conclusion, eq. (2) holds for \(R \to 0 \), and its r.h.s. in independent of \(R \), therefore it holds for any \(R \). As you see, a lot of talking, and few formulas. □

Mathematician’s proof:
Let’s choose the origin 0 to be \(\vec{r}_0 \). Also, to simplify the notation we will drop the subscript ‘sphere(\(\vec{r}_0, R \))’ from the integral. Instead, \(S \) will be the sphere’s surface, and \(V \), the sphere’s volume. We will make extensive use of

1. Laplace’s equation (1);
2. Gauss’s theorem to express volume integrals as surface integrals and vice-versa;
3. \(\vec{\nabla} \cdot (f \vec{g}) = \vec{\nabla}f \cdot \vec{g} + f \vec{\nabla} \cdot \vec{g} \), to “integrate by parts”;
4. the fact that for a sphere, \(r \equiv |\vec{r}| \) is constant throughout the surface, and equal to \(R \), so that we can freely factor it out (or in) of surface integrals.
5. the fact that for a sphere, \(\hat{r} \) is the same as the outgoing normal \(\hat{n} \);
6. the properties of the Dirac delta-function.

Keeping all this in mind, starting from the r.h.s. of eq. (2) we have

\[
\frac{1}{4\pi R^2} \oint_S V \, d\vec{a} = \frac{1}{4\pi R^2} \oint_S V \hat{r} \cdot d\vec{a}
\]
(8)
\[
= \frac{1}{4\pi} \int_S V \hat{r} \cdot d\vec{a}
\]
(9)
\[
= \frac{1}{4\pi} \int_V \nabla \cdot \left(V \frac{\hat{r}}{r^2} \right) \, d\tau
\]
(10)
\[
= \frac{1}{4\pi} \int_V \nabla V \cdot \frac{\hat{r}}{r^2} \, d\tau + \frac{1}{4\pi} \int_V V \nabla \cdot \frac{\hat{r}}{r^2} \, d\tau
\]
(11)
\[
= -\frac{1}{4\pi} \int_V \nabla V \cdot \frac{1}{r} \, d\tau + \int_V V \frac{1}{r} \, d\tau + V(3) \delta^3(\vec{r}) \, d\tau
\]
(12)
\[
= -\frac{1}{4\pi} \int_V \nabla \cdot \left(V \frac{1}{r} \right) \, d\tau + \frac{1}{4\pi} \int_V \nabla^2 V \frac{1}{r} \, d\tau + V(0)
\]
(13)
\[
= -\frac{1}{4\pi} \oint_S \frac{1}{r} \nabla V \cdot d\vec{a} + V(0)
\]
(14)
\[
= -\frac{1}{4\pi R} \oint_S \nabla V \cdot d\vec{a} + V(0)
\]
(15)
\[
= -\frac{1}{4\pi R} \int_V \nabla^2 V \, d\tau + V(0) = V(0)
\]
(16)

which is precisely the potential at the center of the sphere. □