a) Following the hint, approximate the larger loop by a dipole whose field B along the dipole axis is given by eq. 30-29:

$$B(z) = \frac{\mu_0}{2\pi} \frac{\hat{M}}{z^3}$$

with $\hat{M} = i\pi R^2 A$ ($\hat{M} = \mu_0 R^2$)

and in our problem z becomes x. Also then assume \hat{M} constant over entire area of small loop.

So by def. of flux Φ:

$$\Phi_{\text{small loop}} = \oint \hat{B} \cdot d\hat{A} = 8A = \mu_0 \left(\frac{\pi R^2}{2\pi} \right) \left(\frac{\pi R^2}{2\pi} \right)$$

$$= \frac{M_0 \pi R^2}{2}$$

b) So then by Faraday's law:

$$\mathcal{E} = -\frac{d\Phi}{dt} =$$
and by the chain rule of calculus:

\[\frac{d}{dt} = -\frac{d\Phi}{dx} = -\frac{d\Phi}{dx} \frac{dx}{dt} = \frac{\partial \Phi}{\partial x} \]

\[= -\left(-3 \frac{\mu_0 T R^2 r^2}{2} \right) v \]

\[= \frac{\mu_0 3 \pi R^2 r^2 v}{2 \times 4} \]

b) direction from Lenz's Law:
- direction of \(\mathbf{B} \) from big loop by RHR: up \(\uparrow \)
- \(\mathbf{B}_0 \) direction of \("\mathbf{B} \) for flux" in little loop: up \(\uparrow \)
As little loop moves up, \(\mathbf{B} \) used to calc. flux ("\(\mathbf{B} \) for flux") gets smaller

\[\uparrow \mathbf{B}_{swt} \quad \uparrow \mathbf{B}_{later} \quad \uparrow \]

\[\text{start} \quad \text{later} \quad \text{even later} \]
so $\Delta \mathbf{B}$, change in \mathbf{B} for flux,
points DOWN:

\[
\begin{align*}
\Delta \mathbf{B} & \quad \text{later} \\
\mathbf{B}_{\text{late}} & \quad \mathbf{B}_{\text{late}} + \Delta \mathbf{B} \\
\mathbf{B}_{\text{even later}} &
\end{align*}
\]

Leuiz's law says $\mathbf{B}_{\text{induced}}$ should oppose this change (i.e., this $\Delta \mathbf{B}$) so we want $\mathbf{B}_{\text{induced}}$ (the field caused by the induced current) to be up \uparrow

and by RHR:

$\mathbf{B}_{\text{induced}}$
So the current should be in some direction as large loop.

31-177

a) \quad \text{SIDE VIEWS:}

\[\Phi = N \oint \mathbf{B} \cdot d\mathbf{A} = N \mathbf{B} \cdot \mathbf{A} = N B A \cos \theta \]

\[= N B a b \cos \theta \]

We are told, in effect, that \(\theta = 2\pi f t \) (rotating smoothly; \(\theta = \omega t = 2\pi f t \)) so:

\[\Phi(t) = B a b \cos 2\pi f t \]

and by Faraday's law:

\[E = -\frac{d\Phi}{dt} = N B a b (2\pi f) \sin(2\pi f t) \]

b) \(E = 2\pi 60 (N a b) (5) \) so \(a b N = 188.4 \text{ m}^2 \).
Along horizontal strips of width dy, B is constant and $B(y) = \frac{\mu_0 i}{2\pi y}$

so $d\Phi = B \cdot d\hat{A} = B \cdot dy = \frac{\mu_0 i}{2\pi} dy$

and then

$$\Phi = \int_{r-b/2}^{r+b/2} \frac{\mu_0 i a \, dy}{2\pi y}$$

$$= \frac{\mu_0 i a}{2\pi} \ln \left(\frac{r+b/2}{r-b/2} \right)$$

b) Since loop is moving, r is a function of t: $r(t)$ and $\frac{dr}{dt} = \dot{r}$.

Part a) gives us $\Phi(r)$ by Faraday's law

$$\varepsilon = -\frac{d\Phi}{dt} = \text{chain rule of calculus} \Rightarrow \frac{\varepsilon}{\dot{r}} = -\frac{d\Phi}{dr} \left(\frac{dr}{dt} \right)$$
\[
\mathcal{E} = -\frac{\mu_0 I V}{2\pi}\left(\frac{1}{r+b/2} - \frac{1}{r-b/2}\right)
\]

And by Ohm's law, \(\mathcal{E} = IR\),

\[
I_{loop} = \frac{M_0 V}{2\pi R}\left(\frac{1}{r-b/2} - \frac{1}{r+b/2}\right)
\]

31-28)

Call vertical height of loop aq above \(Y\). At terminal velocity \(V_T\) this height is changing at a rate \(\frac{dy}{dt} = V_T\).

The flux in the loop,

\[
\Phi = \int B dA = B A = B L y
\]

is then changing at rate

\[
\frac{d\Phi}{dt} = B L \frac{dy}{dt} = B L V_T
\]
And by Faraday's 1st law, the current is:

\[i = \frac{\varepsilon}{R} = -\frac{1}{R} \frac{d\Phi}{dt} = -\frac{BLv_t}{R} \]

Now because there is a current in the loop, there is a magnetic force, \(\vec{F}_B \), acting on it:

\[|\vec{F}_B| = \int \vec{\text{ind}} \times \vec{B} \, d\vec{A} = \int \text{ind} d\vec{x} \times \vec{B} \]

Forces cancel on vertical legs so

\[|\vec{F}_B| = ILB \]

\[= \frac{B^2 L^2 v_t}{R} \]

No acceleration means total force = 0, balanced forces, so

\[|\vec{F}_{\text{gravity}}| = |\vec{F}_B| \]

\[mg = \frac{B^2 L^2 v_t}{R} \]
So \[V_L = \frac{mgR}{B^2L^2} \]

31-34) Make a function for \(B \):

\[B = 29.6 + 0.2 \sin(2\pi(15)t) \]

Think of an imaginary loop at \(r = 1.6 \text{ cm} \). The flux through this loop is:

\[\Phi_{1.6} = \oint B \, dl = \Phi_A = B \pi (1.6 \text{ cm})^2 \]

and so

\[\frac{d\Phi}{dt} = -2\pi (15)(0.2) \int \cos(2\pi(15)t) \pi (1.6) \]

\[= 1.5 \cos(2\pi(15)t) = 0.16 \]

So \[\frac{d\Phi}{dt} \bigg|_{\text{max}} = 1.5 \]

By Faraday's law, eq. 31-22)

\[\oint E \cdot dl = -\frac{d\Phi}{dt} \]
Along loop $|E|$ is constant as is $E \cdot ds$, by cylindrical symmetry so:

$$\int E \cdot ds = 2\pi r E = 2\pi E (0.165)$$

and solving 3122 for E

$$E = \frac{261}{2\pi (0.165)} = \frac{1}{2\pi (0.165)}$$

$$\approx 7.5$$

(Warning: Final answer may be off due to calculation errors; however, this is correct way to do the problem)

31-38) Cross sectional view

Choose amperian vortex shaped loop as w/ regular (height = Q)
Solenoid: We are ONLY if $B = 0$.
outside and we assume that B is constant inside as μ reg. solenoid.
So the only part of the loop that has nonzero $\vec{B} \cdot d\vec{l}$ is the inside vertical leg, and

$$\oint_{\text{box loop}} \vec{B} \cdot d\vec{l} = B l$$

And so by Ampere's law,

$$\oint_{\text{loop}} \vec{B} \cdot d\vec{l} = \mu_0 I_{\text{loop}}$$

then

$$B l = \mu_0 I_{\text{enclosed in loop}}$$

The fraction of the total current i enclosed in loop is $\frac{l}{W}$.

So $Bl = \mu_0 \frac{l}{W} i \Rightarrow \boxed{B = \frac{\mu_0 i}{W}}$
b) Use energy:

Total energy stored in fields \(E_F \) equals total energy in inductor \(E_L \).

\[E_F = E_L \]

\(E_F = \text{Energy density} \times \text{Volume} = \int u_0 \, dV \)

Eq. 31-56 \(u_0 = \frac{B^2}{2\mu_0} \). Since \(B \) is constant:

\[E_F = \int u_0 \, dV = \int \frac{B^2}{2\mu_0} \, dV = V_{\text{coil}} \frac{B^2}{2\mu_0} \]

\[= \frac{\pi R^2 W B^2}{2\mu_0} \]

\[= \frac{\pi R^2 W}{2\mu_0} \left(\frac{\mu_0 I}{W} \right)^2 = \frac{\pi R^2 W \mu_0 I^2}{2} \]
Now by 3151

\[E_L = \frac{1}{2} Li^2 \]

So use the energy equation to solve for \(L \)

\[E_L = E_F \]

\[\frac{1}{2} Li^2 = \frac{\pi R^2 \mu_0 W}{2} \]

\[L = \frac{\pi R^2 \mu_0 W}{2} \]

NOTE: Using energy equation \(E_F = E_L \) is often easier than using the definition of inductance. Use this method when \(B \) is constant over some volume.
This time, use def. of inductance:

\[L = N \frac{\Phi}{i} = \frac{\Phi}{i} \]

Note that \(B \) is constant along vertical strips and that the \(B \)s from both wires at any distance \(x \) between add up. So the flux through one of these strips is:

\[d\Phi = B \cdot dA = B \delta l \, dx = (B + B) \, l \, dx \]

And therefore:

\[\Phi = \int_{a}^{b} \left(\frac{\mu_0 i}{2\pi x} + \frac{\mu_0 i}{2\pi (d-x)} \right) l \, dx \]

\[= \frac{\mu_0}{2\pi} \left[\ln x \bigg|_{a}^{d-a} - \ln (d-x) \bigg|_{a}^{d-a} \right] \]
\[
\frac{\mu_0 l i}{2\pi} \left(\ln \left(\frac{d-a}{a} \right) - \ln \left(\frac{a}{d-a} \right) \right) = \frac{\mu_0 l i}{2\pi} \left(\ln \left(\frac{d-a}{a} \right) + \ln \left(\frac{d-a}{a} \right) \right) = \frac{\mu_0 l i \ln \left(\frac{d-a}{a} \right)}{2\pi}
\]

Finally, by definition of inductance:

\[
L = \frac{\Phi}{i} = \frac{\mu_0 l i \ln \left(\frac{d-a}{a} \right)}{2\pi}
\]

31-55 (a)

Use Kirchhoff's law around loop with \(R + L \) (abcd), first applying current conservation:

\[
i_1 = i_2 + i_3 \Rightarrow i_3 = i_1 - i_2
\]

(if we had chosen opposite direction for \(i_3 \), this eq. would change)

yields the following differential equations...
\[-L \frac{di_2}{dt} + i_3 R = 0\]

rewritten in terms of \(i_2, i_1\)

\[-L \frac{di_2}{dt} + (i_1 - i_2) R = 0\]

or

\[\frac{di_2}{dt} + \frac{i_2}{L/R} = \frac{i_1 R}{L}\]

This equation has the exact same form as eq. 28-38 (i.e. you've seen it before) so, just following the derivation there, with the replacements: (see p. 650)

\[RC \rightarrow L/R \quad \text{and} \quad \frac{\varepsilon}{R} \rightarrow \frac{i_1 R}{L}\]

(we can do this because we are told that \(i_1\) is a constant.)

We can just write down the solution (like 28-38)

\[i_2 = i_1 \left(1 - e^{-\frac{t R}{L}}\right)\]
b) \[i_3 = i_1 - i_2 \]

\[
\begin{align*}
i_1 (t = \frac{L}{R} \ln 2) &= i_1^0 + \frac{Q}{C} \\
i_2 (t = \frac{L}{R} \ln 2) &= i_1 (1 - e^{-\frac{L}{R} \frac{\ln 2}{L}}) = i_1 (1 - e^{-\frac{L}{R}}) \\
&= i_1 (1 - e^{-L}) = \frac{i_1}{2} = \frac{i_1}{2}
\end{align*}
\]

therefore

\[i_3 = i_1 - \frac{i_1}{2} = \frac{i_1}{2} = i_2 \]

Use def of Mut. ind.

\[M_{21} = \frac{N_2 \Phi_{21}}{i_1} \quad \text{or} \quad M_{12} = \frac{N_1 \Phi_{12}}{i_2} \]

For a small slice of the 2 solenoids:

\[N_4 \quad \text{is easy; just} \ln \frac{d}{r} \]

\[\Phi_{12} \quad \text{is just flux of} \ B_z \quad \text{through} \ i. \]
$$\Phi_{12} = \int B_2 \, dA = B_2 A_1$$

$$= B_2 \left(\pi R_1^2 \right) = \left(m_0 n_2 l_2 \right) \left(\pi R_1^2 \right)$$

(B_2 from Φ_{sol} equation)

$$= m_0 n_2 \pi R_1^2 l_2$$

so

$$M_{12} = m_0 n_2 \pi R_1^2 l_2$$

The reason $M_{12} = M_{21}$ only depends on R_1 is because when you solve for M_{12} this way only A_1 comes in, but even if you solve for M_{21} the B-field of loop 1 only exists inside loop 1 so Φ_{21} would still be non-zero over A_1 only.

A more elegant way to explain it is: inside solenoid 1 is the only place the fields $B_1 + B_2$ "mix." Nothing is different than a regular R_2 solenoid outside this volume.
Remember \(M_{i2} = M_{2i} \) always.

Solve for \(M_{21} \). We need \(\Phi_{21} \). Consider one loop of outer coil 2:

We need flux of \(B \) over cross sect. area of 2. \((A_2)\)

However \(B \) is non-zero only inside \(A_1 \). So we only need flux through 1.

In essence \(\Phi_{21} = \Phi_{11} \). \(B \) is constant over vertical strips as drawn because \(B_{\text{toroid}} = \frac{M_0 N_i i x}{2 \pi r} \). So:

\[
\Phi_{21} = B_1 \cdot dA_1 = B_1 h dr = \frac{M_0 N_i i x h}{2 \pi r} dr
\]

\[
\Phi_{21} = \int_a^b \frac{M_0 N_1 N_2 i x h}{2 \pi r} dr = \frac{M_0 N_1 N_2 i x h}{2 \pi} \ln \frac{b}{a}
\]

So:

\[
M_{21} = N_2 \Phi_{21}
\]

\[
= \frac{M_1 N_1 N_2 i x h \ln b}{2 \pi} \frac{b}{a}
\]
a) Again, remember $M_{21} = M_{12}$ always.

Call loop inductor 2 and solve for M_{21} then:

$$N_2 = N$$

For flux Φ_{21} use horizontal strips of width dr as shown plus length l.

$$B_{1} = B_{wire} = \frac{\mu_0 i}{2\pi r} = constant$$

Along Strip

$$\Phi_{21} = B_{1} IA_{strip} = \frac{\mu_0 i l}{2\pi r}$$

$$\Phi_{21} = \int_{a}^{a+b} \frac{\mu_0 i l}{2\pi r} dr = \frac{\mu_0 i l \ln \left(\frac{a+b}{a} \right)}{2\pi}$$

So $M_{21} = M = \frac{N \mu_0 l \ln \left(\frac{a+b}{a} \right)}{2\pi}$

$$b) \left[0.3 \right] \left[\left(\frac{1}{0.01} \right) \left(4\pi \times 10^{-7} \right) \ln \left(\frac{0.01 + 0.08}{0.01} \right) \right] \frac{1}{2\pi} = \frac{1}{2\pi} 8.3 \times 10^{-5} \, H \leq 1.4 \times 10^{-5} \, H$$

NOTE: Recheck math