PHY W3003 Supplementary Reading

Historical Background
Stillman Drake's Galileo at work: his scientific biography (University of Chicago Press) is a fascinating, technically detailed account of what Galileo (who was in some sense the first experimental physicist) actually did as he made his discoveries. I give here pages 91-103 and 124-133, which explain some of the work which led to the equations of motion we now know as Newton's laws.

John Maynard Keynes' (yes, the economics Keynes) article gives a view, which will probably surprise you,  of Newton's personality and other research interests

The scientific biography par excellence is Abraham Pais' Subtle is the Lord, about Einstein's life and work. This book  explains (with equations, where appropriate) what Einstein and his contemporaries were thinking about science and about life in general, and is particularly interesting in giving a glimpse of the research process, including blind alleys and wrong turns. I include here text relating to how people thought about inertial frames before General Relativity was devised

John Dunning, a great Columbian, was responsible for creating and using the cyclotron that until recently was in the basement of Pupin. An account of his life and activities is here

Emmy Noether is known to physicists from her `Noether's Theorem' which relates continuous symmetries of a system to conserved quantities. She is most known to mathematicians for fundamental contributions to abstract algebra, especially ring theory.  She was dismissed from her professorship at Gottingen by the Nazis and came to the US to teach at Bryn Mawr and the Institute for Advanced Study, but died soon thereafter of complications from an operation.  You can read more about her life here (in German)  and here
Other Applications of Classical Mechanics
Life at Low Reynolds Number shows how thinking clearly about dimensionless ratios of physical properties leads to remarkable insights into biological systems.

This article, from Scientific American, explains the computer science (and a bit of the physics) behind what Columbia's Professor Eitan Grinspun is doing in computer animation.
Inertial Frames
S. Weinberg, Gravitation and Cosmology, is a characteristically lucid and informative (although now somewhat out of date) graduate level text.  Chapters 2 and 3 are  more or less accessible to you and give a clear account of inertial frames and the equivalence principle. See also the selection from  Subtle is the Lord above.
Energy conservation
Chapter 4 of Volume 1 of the Feynman Lectures on Physics has a very instructive introduction to energy and its conservation while Chapter 14 of Volume 1has a wonderful explanation of work, of conservative and non-conservative forces and of fields.
Phase Plots
Chapter 1 of Ordinary Differential Equations by Jordan and Smith has a nice if compact discussion of phase plots, at a level a bit more advanced than is this course.  See also the Taubes book below
Mathematical Background
R. Shankar, Basic Training in Mathematics: A Fitness Program for Science Students,  is a very useful  introduction to a range of mathematical techniques that physics students need to know.
C. Taubes, Modelling Differential Equations in Biology, although focussed on a different scientific domain, is an excellent introduction to many aspects of the mathematics of differential equations used in this course.
Fourier Series
Fourier Analysis by T. W. Korner is a delightful introduction to the mathematical aspects of the  subject--at an ``elementary'' (to a mathematician) level and with many interesting historical asides.
Linear Algebra
Introduction to Linear Algebra by Gilbert Strang. This is (justifiably) the classic reference.
Equivalence Principle
Chapters 9, 12, 13 of A. Pais Einstein biography Subtle is the Lord  contains an excellent account of the equivalence of gravitational and inertial mass and the role this played in the construction of the general theory of relativity.