Gravity dominates the large-scale structure of the universe, but only by default, so to speak. Matter arranges itself to cancel electromagnetism, and the strong and weak forces are intrinsically short range. At a more fundamental level, gravity is extravagantly feeble. Acting between protons, gravitational attraction is about 10^{-36} times weaker than electrical repulsion. Where does this outlandish disparity come from? What does it mean?

These questions greatly disturbed Richard Feynman. His famous paper on quantizing general relativity, in which he first described his discovery of the “ghost particles” that eventually played a crucial role in understanding modern gauge field theories, begins with a discussion of the smallness of gravitational effects on subatomic scales, after which he concludes,

“... it is therefore clear that the problem we are working on is not the correct problem; the correct problem is: What determines the size of gravitation? The same question drove Paul Dirac to consider the radical idea that the fundamental “constants” of nature are time dependent, so that the weakness of gravity could be related to the great age of the universe, through the following numerology: The observed expansion rate of the universe suggests that it began with a bang roughly 10^{17} seconds ago. On the other hand, the time it takes light to traverse the diameter of a proton is roughly 10^{-34} seconds. Squinting through rose-colored glasses, we can see that the ratio, 10^{-41}, is not so far from our mysterious 10^{-36}. (For what it’s worth, the numbers agree better if we compare gravitational attraction versus electrical repulsion for electrons, instead of protons.) But the age of the universe, of course, changes with time. So if the numerical coincidence is to abide, something else—the relative strength of gravity, or the size of protons—will have to change in proportion. There are powerful experimental constraints on such effects, and Dirac’s idea is not easy to reconcile with our standard modern theories of cosmology and fundamental interactions, which are tremendously successful.

In this column, I show that today it is natural to see the problem of why gravity is extravagantly feeble in a new way—upside down and through a distorting lens compared to its superficial appearance. When viewed this way, the feebleness of gravity comes to seem much less enigmatic. In a sequel, I’ll make a case that we’re getting close to understanding it.

First let’s quantify the problem. The mass of ordinary matter is dominated by protons (and neutrons), and the force of gravity is proportional to mass squared. Using Newton’s constant, the proton mass, and fundamental constants, we can form the pure dimensionless number

$$N = G_N m_p^2 / \hbar c,$$

where G_N is Newton’s constant, m_p is the proton mass, \hbar is Planck’s constant, and c is the speed of light. Substituting the measured values, we obtain

$$N \approx 3 \times 10^{-39}.$$

This is what we mean, quantitatively, when we say that gravity is extravagantly feeble.

We can interpret N directly in physical terms, too. Since the proton’s geometrical size R is roughly the same as its Compton radius, $\hbar/m_p c$, the gravitational binding energy of a proton is roughly $G_N m_p^2 / R \approx N m_p c^2$. So N is the fractional contribution of gravitational binding energy to the proton’s rest mass.

Soon after Max Planck introduced his constant \hbar in the course of a phenomenological fit to the blackbody radiation spectrum, he pointed out the possibility of building a system of units based on the three fundamental constants \hbar, c, and G_N. Indeed, from these three we can define a unit of mass $(\hbar c/G_N)^{1/2}$, a unit of length $(\hbar G_N/c^3)^{1/2}$, and a unit of time $(\hbar G_N/c^5)^{1/2}$—what we now call the Planck mass, length, and time, respectively. Planck’s proposal for a system of units based on fundamental physical constants was, when it was made, formally correct but rather thinly rooted in fundamental physics. Over the course of the 20th century, however, his proposal became compelling. Now there are profound reasons to regard c as the fundamental unit of velocity and \hbar as the fundamental unit of action. In the special theory of relativity, there are symmetries relating space and time—and c serves as a conversion factor between the units in which space intervals and time intervals are measured. In quantum theory, the energy of a state is proportional to the frequency of its oscillations—and \hbar is the conversion factor. Thus c and \hbar appear directly as primary units of measurement in the basic laws of these two great theories. Finally, in general relativity theory, spacetime curvature is proportional to the density of energy—and G_N (actually $1/G_N c^4$) is the conversion factor.

If we accept that G_N is a primary quantity, together with \hbar and c, then the enigma of N’s smallness looks quite different. We see that the question it poses is not, “Why is gravity so feeble?” but rather, “Why is the proton’s mass so small?” For in natural units, the strength of gravity simply is what it is, a primary quantity, while the proton’s mass is the tiny number \sqrt{N}. That’s a provocative and fruitful way to invert the question, because we’ve attained quite a deep understanding of the origin of the proton’s mass, as I discussed in an earlier col-

Frank Wilczek

Scaling Mount Planck I: A View from the Bottom

Frank Wilczek

We can interpret N directly in physical terms, too. Since the proton’s geometrical size R is roughly the same as its Compton radius, $\hbar/m_p c$, the gravitational binding energy of a proton is roughly $G_N m_p^2 / R \approx N m_p c^2$. So N is the fractional contribution of gravitational binding energy to the proton’s rest mass.

Soon after Max Planck introduced his constant \hbar in the course of a phenomenological fit to the blackbody radiation spectrum, he pointed out the possibility of building a system of units based on the three fundamental constants \hbar, c, and G_N. Indeed, from these three we can define a unit of mass $(\hbar c/G_N)^{1/2}$, a unit of length $(\hbar G_N/c^3)^{1/2}$, and a unit of time $(\hbar G_N/c^5)^{1/2}$—what we now call the Planck mass, length, and time, respectively. Planck’s proposal for a system of units based on fundamental physical constants was, when it was made, formally correct but rather thinly rooted in fundamental physics. Over the course of the 20th century, however, his proposal became compelling. Now there are profound reasons to regard c as the fundamental unit of velocity and \hbar as the fundamental unit of action. In the special theory of relativity, there are symmetries relating space and time—and c serves as a conversion factor between the units in which space intervals and time intervals are measured. In quantum theory, the energy of a state is proportional to the frequency of its oscillations—and \hbar is the conversion factor. Thus c and \hbar appear directly as primary units of measurement in the basic laws of these two great theories. Finally, in general relativity theory, spacetime curvature is proportional to the density of energy—and G_N (actually $1/G_N c^4$) is the conversion factor.

If we accept that G_N is a primary quantity, together with \hbar and c, then the enigma of N’s smallness looks quite different. We see that the question it poses is not, “Why is gravity so feeble?” but rather, “Why is the proton’s mass so small?” For in natural (Planck) units, the strength of gravity simply is what it is, a primary quantity, while the proton’s mass is the tiny number \sqrt{N}. That’s a provocative and fruitful way to invert the question, because we’ve attained quite a deep understanding of the origin of the proton’s mass, as I discussed in an earlier col-
TODAY, August 2000, page 22). Look-

The key dynamical phenomenon is

The attractive interaction among

In QCD, the antiscreening effect of

In QCD, the antiscreening effect of

References

E = pc. Simple algebra then yields

Thus the proton mass is determined by the distance at which the

This last elucidation, profound and beautiful, is worthy of the problem. It has to do with how the coupling runs. When the QCD coupling is weak, “running” is a bit of a misnomer. Actually the coupling creeps along, like a wounded snail. To be precise (and we can in fact calculate the behavior precisely, following the rules of quantum field theory, and even check it out experimentally5), the inverse coupling varies logarithmically with distance. As a result, the distance will need to change by many orders of magnitude for a moderately weak coupling to evolve into a strong one. So, finally, all we require to generate our large QCD distance dynamically is that, at the Planck length, the QCD coupling is moderately small (between a third and a half of what it is observed to be at 10–15 cm). From this modest and innocuous starting point, by following our logical flow upstream, we arrive at the tiny value of N, which at first sight seemed so absurd.

I've explained how the ridiculously feeble appearance of gravity is consistent with the idea that this force sets the scale for a fundamental theory of nature. But does it? Stay tuned.

http://www.physicstoday.org