Matrices

Matrices are a way of representing systems of linear equations. Consider the following systems of equations relating variables s, t to u, v:

\[
\begin{align*}
s &= au + bv \\
t &= cu + dv
\end{align*}
\]

(1) (2)

This system of equations can be represented by the following matrix equation.

\[
\begin{pmatrix} s \\ t \end{pmatrix} = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}
\]

(3)

Why would we want to do this? It turns out to make calculations easier. Imagine we now want use new variables p, q, which are related to s, t:

\[
\begin{align*}
p &= es + ft \\
q &= gs + ht
\end{align*}
\]

(4) (5)

Solving for p and q in terms of the original variables s and t quickly becomes a huge mess, for example:

\[
p = e(au + bv) + f(cu + dv); q = g(au + bv) + h(cu + dv)
\]

(6)

This really isn’t so bad, but if there were more than two variables involved you can see how quickly this becomes a mess. In terms of matrices we would have:

\[
\begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} e & f \\ g & h \end{pmatrix} \begin{pmatrix} a & b \\ c & d \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}
\]

(7)

We can multiply the matrices together to have:

\[
\begin{pmatrix} p \\ q \end{pmatrix} = \begin{pmatrix} ea + fc & eb + fd \\ ga + hc & gb + hd \end{pmatrix} \begin{pmatrix} u \\ v \end{pmatrix}
\]

(8)

The matrix equation can also become messy, but it is nice because you can figure out the composition rules without explicitly using the parameters s, t. In many cases the matrices will have additional properties that simplify the algebra.

So in summary: matrices aren’t new, they are just a new way of representing systems of linear equations. The multiplication rules for 2×2 matrices, and a 2×2 matrix times a vector (which can be thought of as a 2×1 matrix) are given above. You should also know the identity matrix:

\[
\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}
\]

(9)

Any matrix or vector is unchanged when multiplied by the identity, try it! Also, in general matrix multiplication is *not commutative*, that as $AB \neq BA$ if A and B are matrices. You should also convince yourself this is true.