Probing AdS/CFT with Heavy Quarks

William Horowitz
Columbia University
Frankfurt Institute for Advanced Studies (FIAS)
October 26, 2007

arXiv:0706.2336 (LHC predictions)
arXiv:0710.0703 (RHIC predictions)

With many thanks to Miklos Gyulassy, Simon Wicks, and Ivan Vitev
Introduction

• AdS/CFT looks promising, pQCD also has its successes

• Desire a robust probe that can cleanly falsify one or both formalisms:
 - Try Heavy Quarks!
Quantitative AdS/CFT with Jets

• Langevin model
 - Collisional energy loss for heavy quarks
 - Restricted to low p_T
 - pQCD vs. AdS/CFT computation of D, the diffusion coefficient

• ASW model
 - Radiative energy loss model for all parton species
 - pQCD vs. AdS/CFT computation of \hat{q}
 - Debate over its predicted magnitude

• ST drag calculation
 - Drag coefficient for a massive quark moving through a strongly coupled SYM plasma at uniform T
 - not yet used to calculate observables: let’s do it!
Looking for a Robust, Detectable Signal

- Use future detectors’ identification of c and b to distinguish between pQCD, AdS/CFT

 • $R_{AA} \sim (1-\varepsilon(p_T))^n(p_T)$, where $p_f = (1-\varepsilon)p_i$ (i.e. $\varepsilon = 1-p_f/p_i$)
 • Asymptotic pQCD momentum loss:

 $$\varepsilon_{\text{rad}} \sim \alpha_s \hat{\ell}^2 \log(p_T/M_q)/p_T$$
 • String theory drag momentum loss:

 $$\varepsilon_{\text{ST}} \sim 1 - \exp(-\mu L), \quad \mu = \pi \lambda^{1/2} T^2/2M_q$$

- Independent of p_T and strongly dependent on M_q!
- T^2 dependence in exponent makes for a very sensitive probe

- Expect: $\varepsilon_{\text{pQCD}} \to 0$ vs. ε_{AdS} indep of p_T!!

 • $dR_{AA}(p_T)/dp_T > 0 \Rightarrow$ pQCD; $dR_{AA}(p_T)/dp_T < 0 \Rightarrow$ ST
Model Inputs for LHC Predictions

- AdS/CFT Drag: nontrivial mapping of QCD to SYM
 - “Obvious”: $\alpha_s = \alpha_{\text{SYM}} = \text{const.}, T_{\text{SYM}} = T_{\text{QCD}}$
 - $D/2\pi T = 3$ inspired: $\alpha_s = .05$
 - pQCD/Hydro inspired: $\alpha_s = .3$ ($D/2\pi T \sim 1$)
 - “Alternative”: $\lambda = 5.5$, $T_{\text{SYM}} = T_{\text{QCD}}/3^{1/4}$
 - Start loss at thermalization time τ_0; end loss at T_c

- WHDG convolved radiative and elastic energy loss
 - $\alpha_s = .3$

- WHDG radiative energy loss (similar to ASW)
 - $\hat{q} = 40, 100$

- Use realistic, diffuse medium with Bjorken expansion
 - PHOBOS ($dN_g/dy = 1750$); KLN model of CGC ($dN_g/dy = 2900$)
LHC c, b $R_{AA} p_T$ Dependence

- Significant rise in R
- Use of this R simply allows p_Q to be part of QCD expression allowing p_T saturation below .2

AdS Strings Intersect with Nuclear Beams at Columbia

William Horowitz

WH, M. Gyulassy, nucl-th/0706.2336

10/26/07
An Enhanced Signal

• But what about the interplay between mass and momentum?

 - Take ratio of c to b \(R_{\text{AA}}(p_T) \)

 • pQCD: Mass effects die out with increasing \(p_T \)
 \[
 R_{\text{PQCD}}^{cb}(p_T) \sim 1 - \alpha_s n(p_T) L^2 \log(M_b/M_c) (\hat{q}/p_T)
 \]
 - Ratio starts below 1, asymptotically approaches 1.
 Approach is slower for higher quenching

 • ST: drag independent of \(p_T \), inversely proportional to mass. Simple analytic approx. of uniform medium gives
 \[
 R_{\text{PQCD}}^{cb}(p_T) \sim n_bM_c/n_cM_b \sim M_c/M_b \sim .27
 \]
 - Ratio starts below 1; independent of \(p_T \)
LHC $R^{c}_{AA}(p_T)/R^{b}_{AA}(p_T)$ Prediction

- **Recall the Zoo:**
 - Taking the ratio cancels most normalization differences seen previously.
 - pQCD ratio asymptotically approaches 1, and more slowly so for increased quenching (until quenching saturates).
 - AdS/CFT ratio is flat and many times smaller than pQCD at only moderate p_T.

WH, M. Gyulassy, nucl-th/0706.2336
But There’s a Catch

- Speed limit estimate for applicability of AdS/CFT drag computation
 - $\gamma < \gamma_{\text{crit}} = (1 + 2M_q/\lambda^{1/2} T)^2$
 - $\sim 4M_q^2/(\lambda T^2)$
 - Limited by $M_{\text{charm}} \sim 1.2$ GeV

- Ambiguous T for QGP
 - Smallest γ_{crit} for largest $T = T(\tau_0, x=y=0): (O)$
 - Largest γ_{crit} for smallest $T = T_c: (||)$
LHC $R_{AA}^c(p_T)/R_{AA}^b(p_T)$ Prediction (with speed limits)

- $T(\tau_0)$: (O), corrections unlikely for smaller momenta
- T_c: (|), corrections likely for higher momenta

WH, M. Gyulassy, nucl-th/0706.2336
Measurement at RHIC

- Future detector upgrades will allow for identified c and b quark measurements

- RHIC production spectrum significantly harder than LHC

 - $n_c \neq n_b \neq \text{const.}$

 - NOT slowly varying
 - No longer expect pQCD $dR_{AA}/dp_T > 0$

 - Large n requires corrections to naïve $R^{cb} \sim M_c/M_b$

\begin{figure}
\centering
\includegraphics[width=\textwidth]{graph.png}
\caption{Comparison of RHIC and LHC production spectra.}
\end{figure}
RHIC c, b R_{AA} p_T Dependence

- Large increase in $n(p_T)$ overcomes reduction in E-loss and makes pQCD $dR_{AA}/dp_T < 0$, as well

William Horowitz
AdS Strings Intersect with Nuclear Beams at Columbia
RHIC R^{cb} Ratio

- Wider distribution of AdS/CFT curves due to large n: increased sensitivity to input parameters
- Advantage of RHIC: lower T => higher AdS speed limits

AdS Strings Intersect with Nuclear Beams at Columbia

William Horowitz

10/26/07
Conclusions

- Year 1 of LHC could show qualitative differences between energy loss mechanisms:
 - $dR_{AA}(p_T)/dp_T > 0$ => pQCD; $dR_{AA}(p_T)/dp_T < 0$ => ST
- Ratio of charm to bottom R_{AA}, R_{cb}^c, will be an important observable
 - Ratio is: flat in ST; approaches 1 from below in pQCD partonic E-loss
 - A measurement of this ratio NOT going to 1 will be a clear sign of new physics: pQCD predicts ~ 2-3 times increase in R_{cb}^c by 30 GeV — this can be observed in year 1 at LHC

- Measurement at RHIC will be possible
 - AdS/CFT calculations applicable to higher momenta than at LHC due to lower medium temperature

- Universality of pQCD and AdS/CFT Dependencies?